Skip to main content
Log in

Carbon-coated lithium titanate: effect of carbon precursor addition processes on the electrochemical performance

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, two carbon-coated lithium titanate (LTO-C1 and LTO-C2) composites were synthesized using the ball-milling-assisted calcination method with different carbon precursor addition processes. The physical and electrochemical properties of the as-synthesized negative electrode materials were characterized to investigate the effects of two carbon-coated LTO synthesis processes on the electrochemical performance of LTO. The results show that the LTO-C2 synthesized by using Li2CO3 and TiO2 as the raw materials and sucrose as the carbon source in a one-pot method has less polarization during lithium insertion and extraction, minimal charge transfer impedance value and the best electrochemical performance among all samples. At the current density of 300 mA·h·g−1, the LTO-C2 composite delivers a charge capacity of 126.9 mA·h·g−1, and the reversible capacity after 300 cycles exceeds 121.3 mA·h·g−1 in the voltage range of 1.0–3.0 V. Furthermore, the electrochemical impedance spectra show that LTO-C2 has higher electronic conductivity and lithium diffusion coefficient, which indicates the advantages in electrode kinetics over LTO and LTO-C1. The results clarify the best electrochemical properties of the carbon-coated LTO-C2 composite prepared by the one-pot method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yue J P, Badaczewski F M, Voepel P, Leichtweiß T, Mollenhauer D, Zeier W G, Smarsly B M. Critical role of the crystallite size in nanostructured Li4Ti5O12 anodes for lithium-ion batteries. ACS Applied Materials & Interfaces, 2018, 10(26): 22580–22590

    Article  CAS  Google Scholar 

  2. Yi T F, Yang S Y, Xie Y. Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithiumion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(11): 5750–5777

    CAS  Google Scholar 

  3. Zhang T, Paillard E. Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery. Frontiers of Chemical Science and Engineering, 2018, 12(3): 577–591

    Article  CAS  Google Scholar 

  4. Cao S M, Feng X, Song Y Y, Liu H J, Miao M, Fang J H, Shi L Y. In situ carbonized cellulose-based hybrid film as flexible paper anode for lithium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(2): 1073–1079

    Article  CAS  Google Scholar 

  5. Cheng J, Che R C, Liang C Y, Liu J W, Wang M, Xu J J. Hierarchical hollow Li4Ti5O12 urchin-like microspheres with ultra-high specific surface area for high rate lithium ion batteries. Nano Research, 2014, 7(7): 1043–1053

    Article  CAS  Google Scholar 

  6. Ge H, Hao T T, Osgood H, Zhang B, Chen L, Cui L X, Song X M, Ogoke O, Wu G. Advanced mesoporous spinel Li4Ti5O12/RGO composites with increased surface lithium storage capability for high-power lithium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(14): 9162–9169

    Article  CAS  Google Scholar 

  7. Feng X Y, Zou H L, Xiang H F, Guo X, Zhou T P, Wu Y C, Xu W, Yan P F, Wang C M, Zhang J G, Yu Y. Ultrathin Li4Ti5O12 nanosheets as anode materials for lithium and sodium storage. ACS Applied Materials & Interfaces, 2016, 8(26): 16718–16726

    Article  CAS  Google Scholar 

  8. Han M C, Zhang J H, Li Y M, Zhu Y R, Yi T F. Li5Cr7Ti6O25/multiwalled carbon nanotubes composites with fast charge-discharge performance as negative electrode materials for lithium-ion batteries. Journal of the Electrochemical Society, 2019, 166(4): A626–A634

    Article  CAS  Google Scholar 

  9. Haridas A K, Sharma C S, Rao T N. Donut-shaped Li4Ti5O12 structures as a high performance anode material for lithium ion batteries. Small, 2015, 11(3): 290–294

    Article  CAS  Google Scholar 

  10. Zou S, Wang G, Zhang Y M, Xue C H, Chen H Y, Yang G J, Nan H, Wei H M, Lin H. Nano-structure and characterization of carbon composite with Al3+ and Mn4+ co-doped Li4Ti5O12 as anodes for Li-ion batteries. Journal of Alloys and Compounds, 2020, 816: 152609

    Article  CAS  Google Scholar 

  11. Wang Z Y, Sun L M, Yang W Y, Yang J B, Sun K, Chen D F, Liu X F. Unveiling the synergic roles of Mg/Zr co-doping on rate capability and cycling stability of Li4Ti5O12. Journal of the Electrochemical Society, 2019, 166(4): A658–A666

    Article  CAS  Google Scholar 

  12. Zhang H Q, Deng Q J, Mou C X, Huang Z L, Wang Y, Zhou A J, Li J Z. Surface structure and high-rate performance of spinel Li4Ti5O12 coated with N-doped carbon as anode material for lithium-ion batteries. Journal of Power Sources, 2013, 239: 538–545

    Article  CAS  Google Scholar 

  13. Zeng Q, Wu J N, Yu Z H, Luo L G. Conductive PEDOT-decorated Li4Ti5O12 as next-generation anode material for electrochemical lithium storage. Solid State Ionics, 2018, 325: 7–11

    Article  CAS  Google Scholar 

  14. Stenina I A, Shaydullin R R, Kulova T L, Skundin A M, Yaroslavtsev A B. Influence of carbon coating and PANI modification on the electrochemical performance of Li4Ti5O12. Ionics, 2019, 25(5): 2077–2085

    Article  CAS  Google Scholar 

  15. Wang Y X, Tian W, Wang L H, Zhang H R, Liu J L, Peng T Y, Pan L, Wang X B, Wu M B. A tunable molten-salt route for scalable synthesis of ultrathin amorphous carbon nanosheets as high-performance anode materials for lithium-ion batteries. ACS Applied Materials & Interfaces, 2018, 10(6): 5577–5585

    Article  CAS  Google Scholar 

  16. Li B H, Han C P, He Y B, Yang C, Du H D, Yang Q H, Kang F Y. Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy & Environmental Science, 2012, 5(11): 9595–9602

    Article  CAS  Google Scholar 

  17. Zheng L Y, Wang X Y, Xia Y G, Xia S L, Metwalli E, Qiu B, Ji Q, Yin S S, Xie S, Fang K, et al. Scalable in situ synthesis of Li4Ti5O12/carbon nanohybrid with supersmall Li4Ti5O12 nanoparticles homogeneously embedded in carbon matrix. ACS Applied Materials & Interfaces, 2018, 10(3): 2591–2602

    Article  CAS  Google Scholar 

  18. Lu H R, Hagberg J, Lindbergh G, Cornell A. Li4Ti5O12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries. Nano Energy, 2017, 39: 140–150

    Article  CAS  Google Scholar 

  19. Yao N Y, Liu H K, Liang X, Sun Y, Feng X Y, Chen C H, Xiang H F. Li4Ti5O12 nanosheets embedded in three-dimensional amorphous carbon for superior-rate battery applications. Journal of Alloys and Compounds, 2019, 771: 755–761

    Article  CAS  Google Scholar 

  20. Rath P C, Mishra M, Saikia D, Chang J K, Perng T P, Kao H M. Facile fabrication of titania-ordered cubic mesoporous carbon composite: effect of Ni doping on photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 2019, 44(35): 19255–19266

    Article  CAS  Google Scholar 

  21. Zhao S, Zhang M M, Wang Z H, Xian X C. Enhanced high-rate performance of Li4Ti5O12 microspheres/multiwalled carbon nano-tubes composites prepared by electrostatic self-assembly. Electrochimica Acta, 2018, 276: 73–80

    Article  CAS  Google Scholar 

  22. Tang Y K, Liu L, Zhao H Y, Kong L B, Guo Z P, Gao S S, Che Y Y, Wang L, Jia D Z. Rational design of hybrid porous nanotubes with robust structure of ultrafine Li4Ti5O12 nanoparticles embedded in bamboo-like cnts for superior lithium ion storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(8): 3342–3349

    Article  CAS  Google Scholar 

  23. Jiao W L, Chen C, Liang C Y, Che R C. Preparation of carbon nanotube coated Li4Ti5O12 nanosheets heterostructure as ultrastable anodes for lithium-ion batteries. ACS Applied Energy Materials, 2018, 1(11): 6352–6360

    Article  Google Scholar 

  24. Tang Y K, Liu L, Zhao H Y, Jia D Z, Liu W. Porous CNT@ Li4Ti5O12 coaxial nanocables as ultra high power and long life anode materials for lithium ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(6): 2089–2095

    CAS  Google Scholar 

  25. Zhu K X, Gao H Y, Hu G X. A flexible mesoporous LL,Ti5O12-RGO nanocomposite film as free-standing anode for high rate lithium ion batteries. Journal of Power Sources, 2018, 375: 59–67

    Article  CAS  Google Scholar 

  26. Li S J, Mao J. The influence of different types of graphene on the lithium titanate anode materials of a lithium ion battery. Journal of Electronic Materials, 2018, 47(9): 5410–5416

    Article  CAS  Google Scholar 

  27. Qian Y, Cai X Y, Zhang C Y, Jiang H F, Zhou L J, Li B S, Lai L F. A free-standing Li4Ti5O12/graphene foam composite as anode material for Li-ion hybrid supercapacitor. Electrochimica Acta, 2017, 258: 1311–1319

    Article  CAS  Google Scholar 

  28. Tang Y F, Huang F Q, Zhao W, Liu Z Q, Wan D Y. Synthesis of graphene-supported Li4Ti5O12 nanosheets for high rate battery application. Journal of Materials Chemistry, 2012, 22(22): 11257–11260

    Article  CAS  Google Scholar 

  29. Sun L, Kong W B, Wu H C, Wu Y, Wang D T, Zhao F, Jiang K L, Li Q Q, Wang J P, Fan S S. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries. Nanoscale, 2016, 8(1): 617–625

    Article  CAS  Google Scholar 

  30. Zhang Z B, Deng X, Sunarso J K, Cai R, Chu S Y, Miao J, Zhou W, Shao Z P. Two-step fabrication of Li4Ti5O12-coated carbon nanofibers as a flexible film electrode for high-power lithium-ion batteries. ChemElectroChem, 2017, 4(9): 2286–2292

    Article  CAS  Google Scholar 

  31. Li Z T, Wang Y K, Sun H D, Wu W T, Liu M, Zhou J Y, Wu G L, Wu M B. Synthesis of nanocomposites with carbon-SnO2 dual-shells on TiO2 nanotubes and their application in lithium ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(31): 16057–16063

    CAS  Google Scholar 

  32. Li X, Huang P X, Zhou Y, Peng H, Li W, Qu M Z, Yu Z L. A novel Li4Ti5O12/graphene/carbon nano-tubes hybrid material for high rate lithium ion batteries. Materials Letters, 2014, 133: 289–292

    Article  CAS  Google Scholar 

  33. Chou S L, Wang J Z, Liu H K, Dou S X. Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. Journal of Physical Chemistry C, 2011, 115(32): 16220–16227

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilei Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Jiang, Z., Gu, J. et al. Carbon-coated lithium titanate: effect of carbon precursor addition processes on the electrochemical performance. Front. Chem. Sci. Eng. 15, 148–155 (2021). https://doi.org/10.1007/s11705-020-2022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-2022-x

Keywords

Navigation