Skip to main content
Log in

A Note on a Posteriori Error Bounds for Numerical Solutions of Elliptic Equations with a Piecewise Constant Reaction Coefficient Having Large Jumps

  • GENERAL NUMERICAL METHODS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

We have derived guaranteed, robust, and fully computable a posteriori error bounds for approximate solutions of the equation \(\Delta \Delta u + {{\Bbbk }^{2}}u = f\), where the coefficient \(\Bbbk \geqslant 0\) is a constant in each subdomain (finite element) and chaotically varies between subdomains in a sufficiently wide range. For finite element solutions, these bounds are robust with respect to \(\Bbbk \in [0,{\text{c}}{{{\text{h}}}^{{ - 2}}}]\), \(c = {\text{const}}\), and possess some other good features. The coefficients in front of two typical norms on their right-hand sides are only insignificantly worse than those obtained earlier for \(\Bbbk \equiv {\text{const}}{\text{.}}\) The bounds can be calculated without resorting to the equilibration procedures, and they are sharp for at least low-order methods. The derivation technique used in this paper is similar to the one used in our preceding papers (2017–2019) for obtaining a posteriori error bounds that are not improvable in the order of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Verfürth, A Review of a posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (Wiley-Teubner, Chichester, 1995).

    MATH  Google Scholar 

  2. A. Charbonneau, K. Dossou, and R. Pierre, “A residual-based a posteriori error estimator for the Ciarlet–Raviart formulation of the first biharmonic problem,” Numer. Methods Part. Differ. Equations 13, 93–111 (1997).

    Article  MathSciNet  Google Scholar 

  3. P. Neittaanmaki and S. I. Repin, “A posteriori error estimates for boundary-value problems related to the biharmonic operator,” East-West J. Numer. Math. 2, 157–178 (2001).

    MATH  Google Scholar 

  4. S. Adjerid, “A posteriori error estimates for fourth-order elliptic problems,” Comput. Methods Appl. Mech. Eng. 191, 2539–2559 (2002).

    Article  MathSciNet  Google Scholar 

  5. Th. Gratsch and K.-J. Bathe, “A posteriori error estimation techniques in practical finite element analysis,” Comput. Struct. 83, 235–265 (2005).

    Article  MathSciNet  Google Scholar 

  6. K. Liu, “A gradient recovery-based a posteriori error estimators for the Ciarlet–Raviart formulation of the second biharmonic equations,” Appl. Math. Sci. 1, 997–1007 (2007).

    MathSciNet  MATH  Google Scholar 

  7. L. da Beirão da Veiga, J. Niiranen, and R. L. Stenberg, “A posteriori error estimates for the Morley plate bending element,” Numer. Math. 106, 165–179 (2007).

    Article  MathSciNet  Google Scholar 

  8. X. Feng and H. Wu, “A posteriori error estimates for finite element approximations of the Cahn–Hilliard equation and Hele-Shaw flow,” J. Comput. Math. 26, 767–796 (2008).

    MathSciNet  MATH  Google Scholar 

  9. M. Wang and S. Zhang, “A posteriori estimators of nonconforming finite element method for fourth order elliptic perturbation problems,” J. Comput. Math. 26, 554–577 (2008).

    MathSciNet  MATH  Google Scholar 

  10. S. C. Brenner, T. Gudi, and L.-Y. Sung, “An a posteriori error estimator for a quadratic C 0 interior penalty method for the biharmonic problem,” IMA J. Numer. Anal. 30 (3), 777–798 (2010). https://doi.org/10.1093/imanum/drn057

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Hansbo and M. G. Larson, “A posteriori error estimates for continuous/discontinuous Galerkin approximations of the Kirchhoff–Love plate,” Comput. Methods Appl. Mech. Eng. 200 (47–48), 3289–3295 (2011). https://doi.org/10.1016/j.cma.2011.07.007

    Article  MathSciNet  MATH  Google Scholar 

  12. E. H. Georgoulis, P. Houston, and J. Virtanen, “An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems,” IMA J. Numer. Anal. 31, 281–298 (2011).

    Article  MathSciNet  Google Scholar 

  13. T. Gudi, “Residual-based a posteriori error estimator for the mixed finite element approximation of biharmonic equation,” Numer. Methods Part. Differ. Equations 27, 315–328 (2011).

    Article  MathSciNet  Google Scholar 

  14. S. H. Du, R. Lin, and Z. M. Zhang, “Robust residual-based a posteriori error estimators for mixed finite element methods for fourth order elliptic singularly perturbed problems,” arXiv:1609.04506v1 [math.NA] Sep. 15, 2016, 1–21.

  15. M. Ainsworth and T. Vejchodský, “Robust error bounds for finite element approximation of reaction–diffusion problems with non-constant reaction coefficient in arbitrary space dimension,” Comput. Methods Appl. Mech. Eng. 281, 184–199 (2014).

    Article  MathSciNet  Google Scholar 

  16. M. Ainsworth and T. Vejchodský, “A simple approach to reliable and robust a posteriori error estimation for singularly perturbed problems,” Comput. Methods Appl. Mech. Eng. 353, 373–390 (2019). https://doi.org/10.1016/j.cma.2019.05.014

    Article  MathSciNet  MATH  Google Scholar 

  17. V. G. Korneev, “On a renewed approach to a posteriori error bounds for approximate solutions of reaction–diffusion equations,” Advanced Finite Element Methods with Applications (Springer, 2019), pp. 207–228.

    Google Scholar 

  18. V. G. Korneev, “On error control in the numerical solution of reaction–diffusion equation,” Comput. Math. Math. Phys. 59 (1), 1–18 (2019).

    Article  MathSciNet  Google Scholar 

  19. V. G. Korneev, “On the accuracy of a posteriori functional error majorants for approximate solutions of elliptic equations,” Dokl. Math. 96 (1), 380–383 (2017).

    Article  MathSciNet  Google Scholar 

  20. V. Korneev and V. Kostylev, “Some a posteriori error bounds for numerical solutions of plate in bending problems,” Lobachevskii J. Math. 39 (7), 904–915 (2018).

    Article  MathSciNet  Google Scholar 

  21. M. Ainsworth and T. Oden, A posteriori Estimation in Finite Element Analysis (Wiley, New York, 2000).

    Book  Google Scholar 

  22. J. Xu and Z. Zhang, “Analysis of recovery type a posteriori error estimators for mildly structured grids,” Math. Comput. 73 (247), 1139–1152 (2003).

    Article  MathSciNet  Google Scholar 

  23. Z. Zhang, “Ultraconvergence of the patch recovery technique,” Math. Comput. 65 (216), 1431–1437 (1996).

    Article  MathSciNet  Google Scholar 

  24. O. C. Zienkiewicz and J. Z. Zhu, “The superconvergence patch recovery (SPR) and adaptive finite element refinement,” Comput. Methods Appl. Mech. Eng. 101, 207–224 (1992).

    Article  Google Scholar 

  25. P. G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978).

    MATH  Google Scholar 

  26. V. G. Korneev, High-Order Accuracy Finite Element Schemes (Leningr. Gos. Univ., Leningrad, 1977) [in Russian].

    MATH  Google Scholar 

  27. V. G. Korneev, Exact Boundary Approximation at Numerical Solution of High Order Elliptic Equations (Leningr. Gos. Univ., Leningrad, 1991) [in Russian].

    Google Scholar 

  28. V. G. Korneev and K. A. Khusanov, “Curvilinear finite elements of class C 1 with singular coordinate functions,” Differ. Equations 22 (12), 2144–2157 (1986).

    MathSciNet  MATH  Google Scholar 

  29. S. I. Repin and M. E. Frolov, “A posteriori error estimates for approximate solutions to elliptic boundary value problems,” Comput. Math. Math. Phys. 42 (12), 1704–1716 (2002).

    MathSciNet  Google Scholar 

  30. V. G. Korneev and U. Langer, Dirichlet–Dirichlet Domain Decomposition Methods for Elliptic Problems: h and hp Finite Element Discretizations (World Scientific, London, 2015).

    Book  Google Scholar 

  31. J.-P. Aubin, Approximation of Elliptic Boundary-Value Problems (Wiley-Interscience, New York, 1972).

    MATH  Google Scholar 

  32. J. Nitsche, “Zur Konvergenz von Naherungsverfahren bezuglich verschiedener Normen,” Numer. Math. 15 (3), 224–228 (1970).

    Article  MathSciNet  Google Scholar 

  33. S. C. Brenner and L.-Y. Sung, “C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains,” J. Sci. Comput. 22/23, 83–118 (2005).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Korneev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korneev, V.G. A Note on a Posteriori Error Bounds for Numerical Solutions of Elliptic Equations with a Piecewise Constant Reaction Coefficient Having Large Jumps. Comput. Math. and Math. Phys. 60, 1754–1760 (2020). https://doi.org/10.1134/S096554252011007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554252011007X

Keywords:

Navigation