Skip to main content
Log in

Genetic Biocontainment Systems for the Safe Use of Engineered Microorganisms

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recent advances in genetic engineering and synthetic biology have enabled a variety of genetically modified microorganisms (GMOs) designed for open environmental applications. The use of GMOs in these applications, however, raised concerns about the spread of artificial biological matters into the natural environment. To address the issue, genetic biocontainment system has emerged as a way to prevent unauthorized propagation of GMOs and genetic materials into the ecosystem. In this review, we introduce biocontainment systems that control the proliferation of microorganisms and the release of genetic materials, focusing primarily on genetic means to eliminate cells and DNA. We outline each biocontainment system with representative examples, highlighting its advantages and disadvantages. We also discuss future challenges that genetic biocontainment systems should overcome for practical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Tamang, J. P., K. Watanabe, and W. H. Holzapfel (2016) Review: diversity of microorganisms In global fermented foods and beverages. Front Microbiol. 7: 377.

    PubMed  PubMed Central  Google Scholar 

  2. Demain, A. L. and S. Sanchez (2009) Microbial drug discovery: 80 years of progress. J. Antibiot. (Tokyo). 62: 5–16.

    Article  CAS  Google Scholar 

  3. Jozala, A. F., D. C. Geraldes, L. L. Tundisi, V. A. Feitosa, C. A. Breyer, S. L. Cardoso, P. G. Mazzola, L. dOliveira-Nascimento, C. O. Rangel-Yagui, P. O. Magalhaes, M. A. Oliveira, and A. Pessoa Jr. (2016) Biopharmaceuticals from microorganisms: from production to purification. Braz. J. Microbiol. 47 Suppl 1: 51–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee, S. W., N. H. Kang, and J. W. Choi (2019) Functional secretion of granulocyte colony stimulating factor in Bacillus subtilis and its thermogenic activity in brown adipocytes. Biotechnol. Bioprocess Eng. 24: 298–307.

    Article  CAS  Google Scholar 

  5. Pham, J. V., M. A. Yilma, A. Feliz, M. T. Majid, N. Maffetone, J. R. Walker, E. Kim, H. J. Cho, J. M. Reynolds, M. C. Song, S. R. Park, and Y. J. Yoon (2019) A review of the microbial production of bioactive natural products and biologics. Front. Microbiol. 10: 1404.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Banerjee, S., G Mishra, and A. Roy (2019) Metabolic engineering of bacteria for renewable bioethanol production from cellulosic biomass. Biotechnol. Bioprocess Eng. 24: 713–733.

    Article  CAS  Google Scholar 

  7. Rhie, M. N., H. T. Kim, S. Y. Jo, L. L. Chu, K. A. Baritugo, M. G. Baylon, J. Lee, J. G. Na, L. H. Kim, T. W. Kim, C. Park, S. H. Hong, J. C. Joo, and S. J. Park (2019) Recent advances in the metabolic engineering of Klebsiella pneumoniae: a potential platform microorganism for biorefineries. Biotechnol. Bioprocess Eng. 24: 48–64.

    Article  CAS  Google Scholar 

  8. Yeom, S. H. and Y. W. Go (2018) Optimization of a novel two-step process comprising re-esterification and transesterification in a single reactor for biodiesel production using waste cooking oil. Biotechnol. Bioprocess Eng. 23: 432–441.

    Article  CAS  Google Scholar 

  9. Shin, H. Y., S. H. Shim, Y. J. Ryu, J. H. Yang, S. M. Lim, and C. G Lee (2018) Lipid extraction from Tetraselmis sp. microalgae for biodiesel production using hexane-based solvent mixtures. Biotechnol. Bioprocess Eng. 23: 16–22.

    Article  CAS  Google Scholar 

  10. Bayat, Z., M. Hassanshahian, and S. Cappello (2015) Immobilization of microbes for bioremediation of crude oil polluted environments: a mini review. Open Microbiol J. 9: 48–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, J. W., D. Na, J. M. Park, J. Lee, S. Choi, and S. Y. Lee (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8: 536–546.

    Article  CAS  PubMed  Google Scholar 

  12. Khalil, A. S. and J. J. Collins (2010) Synthetic biology: applications come of age. Nat. Rev. Genet. 11: 367–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cameron, D. E., C. J. Bashor, and J. J. Collins (2014) A brief history of synthetic biology. Nat. Rev. Microbiol. 12: 381–390.

    Article  CAS  PubMed  Google Scholar 

  14. Epstein, M. M. and T. Vermeire (2016) Scientific opinion on risk assessment of synthetic biology. Trends Biotechnol. 34: 601–603.

    Article  CAS  PubMed  Google Scholar 

  15. Frank, K. M., O. Schneewind, and W. J. Shieh (2011) Investigation of a researcher’s death due to septicemic plague. N Engl. J. Med. 364: 2563–2564.

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt, M. and V. de Lorenzo (2012) Synthetic constructs in/for the environment: managing the interplay between natural and engineered Biology. FEBS Lett. 586: 2199–2206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wright, O., G. B. Stan, and T. Ellis (2013) Building-in biosafety for synthetic biology. Microbiology. 159: 1221–1235.

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt, M. and V. de Lorenzo (2016) Synthetic bugs on the loose: containment options for deeply engineered (micro)organisms. Curr. Opin. Biotechnol. 38: 90–96.

    Article  CAS  PubMed  Google Scholar 

  19. Moe-Behrens, G. H. G., R. Davis, and K. A. Haynes (2013) Preparing synthetic biology for the world. Front. Microbiol. 4: 5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee, J. W., C. T. Y. Chan, S. Slomovic, and J. J. Collins (2018) Next-generation biocontainment systems for engineered organisms. Nat. Chem. Biol. 14: 530–537.

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt, M. (2010) Xenobiology: a new form of life as the ultimate biosafety tool. Bioessays. 32: 322–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Steidler, L., S. Neirynck, N. Huyghebaert, V. Snoeck, A. Vermeire, B. Goddeeris, E. Cox, J. P. Remon, and E. Remaut (2003) Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 21: 785–789.

    Article  CAS  PubMed  Google Scholar 

  23. Bahey-El-Din, M., P. G. Casey, B. T. Griffin, and C. G. Gahan (2010) Efficacy of a Lactococcus lactis DeltapyrG vaccine delivery platform expressing chromosomally integrated hly from Listeria monocytogenes. Bioeng. Bugs. 1: 66–74.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hirota, R., K. Abe, Z. I. Katsuura, R. Noguchi, S. Moribe, K. Motomura, T. Ishida, M. Alexandrov, H. Funabashi, T. Ikeda, and A. Kuroda (2017) A novel biocontainment strategy makes bacterial growth and survival dependent on phosphite. Sci. Rep. 7: 44748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clark, R. L., G. C. Gordon, N. R. Bennett, H. Lyu, T. W. Root, and B. F. Pfleger (2018) High-CO requirement as a mechanism for the containment of genetically modified cyanobacteria. ACS Synth. Biol. 7: 384–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cai, Y., N. Agmon, W. J. Choi, A. Ubide, G Stracquadanio, K. Caravelli, H. Hao, J. S. Bader, and J. D. Boeke (2015) Intrinsic biocontainment: multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes. Proc. Natl. Acad. Sci. USA. 112: 1803–1808.

    Article  CAS  PubMed  Google Scholar 

  27. Agmon, N., Z. Tang, K. Yang, B. Sutter, S. Ikushima, Y. Cai, K. Caravelli, J. A. Martin, X. Sun, W. J. Choi, A. Zhang, G. Stracquadanio, H. Hao, B. P. Tu, D. Fenyo, J. S. Bader, and J. D. Boeke (2017) Low escape-rate genome safeguards with minimal molecular perturbation of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 114: E1470–E1479.

    Article  CAS  PubMed  Google Scholar 

  28. Huang, S., A. J. Lee, R. Tsoi, F. Wu, Y. Zhang, K. W. Leong, and L. You (2016) Coupling spatial segregation with synthetic circuits to control bacterial survival. Mol. Syst. Biol. 12: 859.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lopez, G. and J. C. Anderson (2015) Synthetic auxotrophs with ligand-dependent essential genes for a BL21(DE3) biosafety strain. ACS Synth. Biol. 4: 1279–1286.

    Article  CAS  PubMed  Google Scholar 

  30. Molin, S., P. Klemm, L. K. Poulsen, H. Biehl, K. Gerdes, and P. Andersson (1987) Conditional suicide system for containment of bacteria and plasmids. Nat. Biotechnol. 5: 1315–1318.

    Article  CAS  Google Scholar 

  31. Schweder, T., I. Schmidt, H. Herrmann, P. Neubauer, M. Hecker, and K. Hofmann (1992) An expression vector system providing plasmid stability and conditional suicide of plasmid-containing cells. Appl. Microbiol. Biotechnol. 38: 91–93.

    Article  CAS  PubMed  Google Scholar 

  32. Contreras, A., S. Molin, and J. L. Ramos (1991) Conditional-suicide containment system for bacteria which mineralize aromatics. Appl. Environ. Microbiol. 57: 1504–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jensen, L. B., J. L. Ramos, Z. Kaneva, and S. Molin (1993) A substrate-dependent biological containment system for Pseudomonas putida based on the Escherichia coli gef gene. Appl. Environ. Microbiol. 59: 3713–3717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Szafranski, P., C. M. Mello, T. Sano, C. L. Smith, D. L. Kaplan, and C. R. Cantor (1997) A new approach for containment of microorganisms: dual control of streptavidin expression by antisense RNA and the T7 transcription system. Proc. Natl. Acad. Sci. USA. 94: 1059–1063.

    Article  CAS  PubMed  Google Scholar 

  35. Kristoffersen, P., G. B. Jensen, K. Gerdes, and J. Piskur (2000) Bacterial toxin-antitoxin gene system as containment control in yeast cells. Appl. Environ. Microbiol. 66: 5524–5526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Balan, A. and A. C. G. Schenberg (2005) A conditional suicide system for Saccharomyces cerevisiae relying on the intracellular production of the Serratia marcescens nuclease. Yeast. 22: 203–212.

    Article  CAS  PubMed  Google Scholar 

  37. Piraner, D. I., M. H. Abedi, B. A. Moser, A. Lee-Gosselin, and M. G. Shapiro (2017) Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat. Chem. Biol. 13: 75–80.

    Article  CAS  PubMed  Google Scholar 

  38. Stirling, F., L. Bitzan, S. O’Keefe, E. Redfield, J. W. K. Oliver, J. Way, and P. A. Silver (2017) Rational design of evolutionarily stable microbial kill switches. Mol. Cell. 68: 686–697.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ronchel, M. C. and J. L. Ramos (2001) Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl. Environ. Microbiol. 67: 2649–2656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chan, C. T. Y., J. W. Lee, D. E. Cameron, C. J. Bashor, and J. J. Collins (2016) ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat. Chem. Biol. 12: 82–86.

    Article  CAS  PubMed  Google Scholar 

  41. Gallagher, R. R., J. R. Patel, A. L. Interiano, A. J. Rovner, and F. J. Isaacs (2015) Multilayered genetic safeguards limit growth of microorganisms to defined environments. Nucleic Acids Res. 43: 1945–1954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Diaz, E., M. Munthali, V. de Lorenzo, and K. N. Timmis (1994) Universal barrier to lateral spread of specific genes among microorganisms. Mol. Microbiol. 13: 855–861.

    Article  CAS  PubMed  Google Scholar 

  43. Torres, B., S. Jaenecke, K. N. Timmis, J. L. Garcia, and E. Diaz (2000) A gene containment strategy based on a restriction-modification system. Environ. Microbiol. 2: 555–563.

    Article  CAS  PubMed  Google Scholar 

  44. Torres, B., S. Jaenecke, K. N. Timmis, J. L. Garcia, and E. Diaz (2003) A dual lethal system to enhance containment of recombinant micro-organisms. Microbiology. 149: 3595–3601.

    Article  CAS  PubMed  Google Scholar 

  45. Yagura, M., S. Y. Nishio, H. Kurozumi, C. F. Wang, and T. Itoh (2006) Anatomy of the replication origin of plasmid ColE2-P9. J. Bacteriol. 188: 999–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wright, O., M. Delmans, G. B. Stan, and T. Ellis (2015) GeneGuard: A modular plasmid system designed for biosafety. ACS Synth. Biol. 4: 307–316.

    Article  CAS  PubMed  Google Scholar 

  47. Caliando, B. J. and C. A. Voigt (2015) Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nat. Commun. 6: 6989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mandell, D. J., M. J. Lajoie, M. T. Mee, R. Takeuchi, G. Kuznetsov, J. E. Norville, C. J. Gregg, B. L. Stoddard, and G. M. Church (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature. 518: 55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rovner, A. J., A. D. Haimovich, S. R. Katz, Z. Li, M. W. Grome, B. M. Gassaway, M. Amiram, J. R. Patel, R. R. Gallagher, J. Rinehart, and F. J. Isaacs (2015) Recoded organisms engineered to depend on synthetic amino acids. Nature. 518: 89–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marliere, P., J. Patrouix, V. Doring, P. Herdewijn, S. Tricot, S. Cruveiller, M. Bouzon, and R. Mutzel (2011) Chemical evolution of a bacterium’s genome. Angew. Chem. Int. Ed. Engl. 50: 7109–7114.

    Article  CAS  PubMed  Google Scholar 

  51. Yang, Z., F. Chen, J. B. Alvarado, and S. A. Benner (2011) Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J. Am. Chem. Soc. 133: 15105–15112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Malyshev, D. A., K. Dhami, T. Lavergne, T. Chen, N. Dai, J. M. Foster, I. R. Correa Jr, and F. E. Romesberg (2014) A semi-synthetic organism with an expanded genetic alphabet. Nature. 509: 385–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pinheiro, V. B., A. I. Taylor, C. Cozens, M. Abramov, M. Renders, S. Zhang, J. C. Chaput, J. Wengel, S. Y. Peak-Chew, S. H. McLaughlin, P. Herdewijn, and P. Holliger (2012) Synthetic genetic polymers capable of heredity and evolution. Science. 336: 341–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Samsung Research Funding & Incubation Center of Samsung Electronics under Project Number SRFC-MA1901-11.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Wook Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Lee, J.W. Genetic Biocontainment Systems for the Safe Use of Engineered Microorganisms. Biotechnol Bioproc E 25, 974–984 (2020). https://doi.org/10.1007/s12257-020-0070-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0070-1

Keywords

Navigation