Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Regulation of Catechins in Uric Acid Metabolism Disorder Related Human Diseases

Author(s): Dan Wu, Wenji Zhang, Xingfei Lai, Qiuhua Li, Lingli Sun, Ruohong Chen, Shili Sun* and Fanrong Cao*

Volume 20, Issue 18, 2020

Page: [1857 - 1866] Pages: 10

DOI: 10.2174/1389557520666200719015919

Price: $65

Abstract

Uric acid is the end product of purine metabolism in humans. High uric acid levels form sodium urate crystals that trigger biological processes, which lead to the development of several diseases, including diabetes, hyperuricemia, gout, inflammatory disease, kidney disease, cardiovascular disease and hypertension. Catechins have been suggested to be beneficial for the regulation of uric acid metabolic disorders due to their powerful antioxidant and anti-inflammatory properties. To identify an effective and safe natural substance that can decrease levels of serum uric acid to improve uric acid metabolism disorders. A search was performed on PubMed, Web of Science and Google Scholar to identify comprehensive studies that presented summarized data on the use of catechins in lowering uric acid levels in diseases. This review details the role of catechins in inhibiting the activity of xanthine oxidase to decrease uric acid overproduction in the liver and in regulating expressions of uric acid transporters, URAT1, OAT1, OAT3, ABCG2 and GLUT9, to balance levels of uric acid secretion and reabsorption through the kidney and intestine. Additionally, Catechins were also found to prevent monosodium urate-induced inflammatory reactions. In vivo, catechins can be used to decrease high uric acid levels that result from hyperuricemia and related diseases. Catechins can be used to maintain the balance of uric acid metabolism.

Keywords: Catechins, uric acid, inflammation, hyperuricemia, nephropathy, metabolic syndrome.

Graphical Abstract
[1]
Kanbay, M.; Segal, M.; Afsar, B.; Kang, D.H.; Rodriguez-Iturbe, B.; Johnson, R.J. The role of uric acid in the pathogenesis of human cardiovascular disease. Heart, 2013, 99(11), 759-766.
[http://dx.doi.org/10.1136/heartjnl-2012-302535] [PMID: 23343689]
[2]
Wu, X.W.; Lee, C.C.; Muzny, D.M.; Caskey, C.T. Urate oxidase: primary structure and evolutionary implications. Proc. Natl. Acad. Sci. USA, 1989, 86(23), 9412-9416.
[http://dx.doi.org/10.1073/pnas.86.23.9412] [PMID: 2594778]
[3]
Wang, Z.; Cui, T.; Ci, X.; Zhao, F.; Sun, Y.; Li, Y.; Liu, R.; Wu, W.; Yi, X.; Liu, C. The effect of polymorphism of uric acid transporters on uric acid transport. J. Nephrol., 2019, 32(2), 177-187.
[http://dx.doi.org/10.1007/s40620-018-0546-7] [PMID: 30382560]
[4]
Johnson, R.J.; Andrews, P. Fructose, uricase, and the Back-to-Africa hypothesis. Evol. Anthropol., 2010, 19(6), 250-257.
[http://dx.doi.org/10.1002/evan.20266]
[5]
Fathallah-Shaykh, S.A.; Cramer, M.T. Uric acid and the kidney. Pediatr. Nephrol., 2014, 29(6), 999-1008.
[http://dx.doi.org/10.1007/s00467-013-2549-x] [PMID: 23824181]
[6]
Álvarez-Lario, B.; Alonso-Valdivielso, J.L. [Hyperuricemia and gout; the role of diet] Nutr. Hosp., 2014, 29(4), 760-770 [Hyperuricemia and gout; the role of diet].
[PMID: 24679016]
[7]
Nickolai, B.; Kiss, C. [Nutritional therapy of gout] Ther. Umsch., 2016, 73(3), 153-158 [Nutritional therapy of gout].
[http://dx.doi.org/10.1024/0040-5930/a000772] [PMID: 27008448]
[8]
Li, P.; Liu, A.; Xiong, W.; Lin, H.; Xiao, W.; Huang, J.; Zhang, S.; Liu, Z. Catechins enhance skeletal muscle performance. Crit. Rev. Food Sci. Nutr., 2019, 1-14.
[PMID: 30633538]
[9]
Gan, R.Y.; Li, H.B.; Sui, Z.Q.; Corke, H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit. Rev. Food Sci. Nutr., 2018, 58(6), 924-941.
[http://dx.doi.org/10.1080/10408398.2016.1231168] [PMID: 27645804]
[10]
Kim, B.S.; Leong, J.; Yu, S.J.; Cho, Y.; Park, C.G.; Kim, D.H.; Ko, E. Im, S.G.; Lee, J.; Kim, Y.J.; Kong, H. Stimulus-Responsive Anti-Oxidizing Drug Crystals and their Ecological Implication. Small, 2019, 15(21)e1900765
[http://dx.doi.org/10.1002/smll.201900765] [PMID: 30950171]
[11]
Shafabakhsh, R.; Milajerdi, A.; Reiner, Ž.; Kolahdooz, F.; Amirani, E.; Mirzaei, H.; Barekat, M.; Asemi, Z. The effects of catechin on endothelial function: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr., 2019, 1-10.
[http://dx.doi.org/10.1080/10408398.2019.1639037] [PMID: 31389256]
[12]
Aucamp, J.; Gaspar, A.; Hara, Y.; Apostolides, Z. Inhibition of xanthine oxidase by catechins from tea (Camellia sinensis). Anticancer Res., 1997, 17(6D), 4381-4385.
[PMID: 9494537]
[13]
Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol., 2016, 213, 8-14.
[http://dx.doi.org/10.1016/j.ijcard.2015.08.109] [PMID: 26316329]
[14]
Giordano, C.; Karasik, O.; King-Morris, K.; Asmar, A. Uric Acid as a Marker of Kidney Disease: Review of the Current Literature. Dis. Markers, 2015, 2015382918
[http://dx.doi.org/10.1155/2015/382918] [PMID: 26106252]
[15]
Rock, K.L.; Kataoka, H.; Lai, J.J. Uric acid as a danger signal in gout and its comorbidities. Nat. Rev. Rheumatol., 2013, 9(1), 13-23.
[http://dx.doi.org/10.1038/nrrheum.2012.143] [PMID: 22945591]
[16]
Xu, C. Hyperuricemia and nonalcoholic fatty liver disease: from bedside to bench and back. Hepatol. Int., 2016, 10(2), 286-293.
[http://dx.doi.org/10.1007/s12072-015-9682-5] [PMID: 26671825]
[17]
Major, T.J.; Dalbeth, N.; Stahl, E.A.; Merriman, T.R. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol., 2018, 14(6), 341-353.
[http://dx.doi.org/10.1038/s41584-018-0004-x] [PMID: 29740155]
[18]
Wang, Y.; Hu, J.W.; Lv, Y.B.; Chu, C.; Wang, K.K.; Zheng, W.L.; Cao, Y.M.; Yuan, Z.Y.; Mu, J.J. The Role of Uric Acid in Hypertension of Adolescents, Prehypertension and Salt Sensitivity of Blood Pressure. Med. Sci. Monit., 2017, 23, 790-795.
[http://dx.doi.org/10.12659/MSM.899563] [PMID: 28190873]
[19]
Mandal, A.K.; Mount, D.B. The molecular physiology of uric acid homeostasis. Annu. Rev. Physiol., 2015, 77, 323-345.
[http://dx.doi.org/10.1146/annurev-physiol-021113-170343] [PMID: 25422986]
[20]
Johnson, R.J.; Nakagawa, T.; Jalal, D.; Sánchez-Lozada, L.G.; Kang, D.H.; Ritz, E. Uric acid and chronic kidney disease: which is chasing which? Nephrol. Dial. Transplant., 2013, 28(9), 2221-2228.
[http://dx.doi.org/10.1093/ndt/gft029] [PMID: 23543594]
[21]
Chaudhary, K.; Malhotra, K.; Sowers, J.; Aroor, A. Uric Acid - key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med., 2013, 3(3), 208-220.
[http://dx.doi.org/10.1159/000355405] [PMID: 24454316]
[22]
Lipkowitz, M.S. Regulation of uric acid excretion by the kidney. Curr. Rheumatol. Rep., 2012, 14(2), 179-188.
[http://dx.doi.org/10.1007/s11926-012-0240-z] [PMID: 22359229]
[23]
Burckhardt, G. Drug transport by Organic Anion Transporters (OATs). Pharmacol. Ther., 2012, 136(1), 106-130.
[http://dx.doi.org/10.1016/j.pharmthera.2012.07.010] [PMID: 22841915]
[24]
Shim, W.; Kim, C.E.; Lee, M.; Lee, S.H.; Park, J.; Do, M.; Yang, J.; Lee, H. Catechin solubilization by spontaneous hydrogen bonding with poly(ethylene glycol) for dry eye therapeutics. J. Control. Release, 2019, 307, 413-422.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.016] [PMID: 31121276]
[25]
Khan, N.; Mukhtar, H. Tea Polyphenols in Promotion of Human Health. Nutrients, 2018, 11(1)E39
[http://dx.doi.org/10.3390/nu11010039] [PMID: 30585192]
[26]
Li, F.; Wang, Y.; Li, D.; Chen, Y.; Qiao, X.; Fardous, R.; Lewandowski, A.; Liu, J.; Chan, T.H.; Dou, Q.P. Perspectives on the recent developments with green tea polyphenols in drug discovery. Expert Opin. Drug Discov., 2018, 13(7), 643-660.
[PMID: 29688074]
[27]
Chu, C.; Deng, J.; Man, Y.; Qu, Y. Green Tea Extracts Epigallocatechin-3-gallate for Different Treatments. BioMed Res. Int., 2017, •••20175615647
[http://dx.doi.org/10.1155/2017/5615647] [PMID: 28884125]
[28]
Eng, Q.Y.; Thanikachalam, P.V.; Ramamurthy, S. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J. Ethnopharmacol., 2018, 210, 296-310.
[http://dx.doi.org/10.1016/j.jep.2017.08.035] [PMID: 28864169]
[29]
Xu, Q.; Langley, M.; Kanthasamy, A.G.; Reddy, M.B. Epigallocatechin Gallate Has a Neurorescue Effect in a Mouse Model of Parkinson Disease. J. Nutr., 2017, 147(10), 1926-1931.
[http://dx.doi.org/10.3945/jn.117.255034] [PMID: 28835392]
[30]
Bansal, S.; Vyas, S.; Bhattacharya, S.; Sharma, M. Catechin prodrugs and analogs: a new array of chemical entities with improved pharmacological and pharmacokinetic properties. Nat. Prod. Rep., 2013, 30(11), 1438-1454.
[http://dx.doi.org/10.1039/c3np70038k] [PMID: 24056761]
[31]
Nagle, D.G.; Ferreira, D.; Zhou, Y.D. Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry, 2006, 67(17), 1849-1855.
[http://dx.doi.org/10.1016/j.phytochem.2006.06.020] [PMID: 16876833]
[32]
Xue, B.; Song, J.; Liu, L.; Luo, J.; Tian, G.; Yang, Y. Effect of epigallocatechin gallate on growth performance and antioxidant capacity in heat-stressed broilers. Arch. Anim. Nutr., 2017, 71(5), 362-372.
[http://dx.doi.org/10.1080/1745039X.2017.1355129] [PMID: 28741959]
[33]
Pervin, M.; Unno, K.; Takagaki, A.; Isemura, M.; Nakamura, Y. Function of Green Tea Catechins in the Brain: Epigallocatechin Gallate and its Metabolites. Int. J. Mol. Sci., 2019, 20(15)E3630
[http://dx.doi.org/10.3390/ijms20153630] [PMID: 31349535]
[34]
Wang, L.X.; Shi, Y.L.; Zhang, L.J.; Wang, K.R.; Xiang, L.P.; Cai, Z.Y.; Lu, J.L.; Ye, J.H.; Liang, Y.R.; Zheng, X.Q. Inhibitory Effects of (-)-Epigallocatechin-3-gallate on Esophageal Cancer. Molecules, 2019, 24(5)E954
[http://dx.doi.org/10.3390/molecules24050954] [PMID: 30857144]
[35]
Kim, H.S.; Quon, M.J.; Kim, J.A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol., 2014, 2, 187-195.
[http://dx.doi.org/10.1016/j.redox.2013.12.022] [PMID: 24494192]
[36]
Jhang, J.J.; Lu, C.C.; Ho, C.Y.; Cheng, Y.T.; Yen, G.C. Protective effects of catechin against monosodium urate-induced inflammation through the modulation of NLRP3 inflammasome activation. J. Agric. Food Chem., 2015, 63(33), 7343-7352.
[http://dx.doi.org/10.1021/acs.jafc.5b02605] [PMID: 26234731]
[37]
Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal., 2013, 18(14), 1818-1892.
[http://dx.doi.org/10.1089/ars.2012.4581] [PMID: 22794138]
[38]
Peluso, I.; Serafini, M. Antioxidants from black and green tea: from dietary modulation of oxidative stress to pharmacological mechanisms. Br. J. Pharmacol., 2017, 174(11), 1195-1208.
[http://dx.doi.org/10.1111/bph.13649] [PMID: 27747873]
[39]
Tlili, N.; Feriani, A.; Saadoui, E.; Nasri, N.; Khaldi, A. Capparis spinosa leaves extract: Source of bioantioxidants with nephroprotective and hepatoprotective effects Biomedicine pharmacotherapy = Biomedecine pharmacotherapie, 2017, 87, 171-179.
[40]
Sone, T.; Kuriyama, S.; Nakaya, N.; Hozawa, A.; Shimazu, T.; Nomura, K.; Rikimaru, S.; Tsuji, I. Randomized controlled trial for an effect of catechin-enriched green tea consumption on adiponectin and cardiovascular disease risk factors. Food Nutr. Res., 2011, 55, 55.
[http://dx.doi.org/10.3402/fnr.v55i0.8326] [PMID: 22144918]
[41]
Henning, S.M.; Niu, Y.; Liu, Y.; Lee, N.H.; Hara, Y.; Thames, G.D.; Minutti, R.R.; Carpenter, C.L.; Wang, H.; Heber, D. Bioavailability and antioxidant effect of epigallocatechin gallate administered in purified form versus as green tea extract in healthy individuals. J. Nutr. Biochem., 2005, 16(10), 610-616.
[http://dx.doi.org/10.1016/j.jnutbio.2005.03.003] [PMID: 16081270]
[42]
Johnson, R.J.; Titte, S.; Cade, J.R.; Rideout, B.A.; Oliver, W.J. Uric acid, evolution and primitive cultures. Semin. Nephrol., 2005, 25(1), 3-8.
[http://dx.doi.org/10.1016/j.semnephrol.2004.09.002] [PMID: 15660328]
[43]
Johnson, R.J.; Sautin, Y.Y.; Oliver, W.J.; Roncal, C.; Mu, W.; Gabriela Sanchez-Lozada, L.; Rodriguez-Iturbe, B.; Nakagawa, T.; Benner, S.A. Lessons from comparative physiology: could uric acid represent a physiologic alarm signal gone awry in western society? J. Comp. Physiol. B, 2009, 179(1), 67-76.
[http://dx.doi.org/10.1007/s00360-008-0291-7] [PMID: 18649082]
[44]
Dalbeth, N.; Merriman, T.R.; Stamp, L.K. Gout. Lancet, 2016, 388(10055), 2039-2052.
[http://dx.doi.org/10.1016/S0140-6736(16)00346-9] [PMID: 27112094]
[45]
Chen, G.; Tan, M.L.; Li, K.K.; Leung, P.C.; Ko, C.H. Green tea polyphenols decreases uric acid level through xanthine oxidase and renal urate transporters in hyperuricemic mice. J. Ethnopharmacol., 2015, 175, 14-20.
[http://dx.doi.org/10.1016/j.jep.2015.08.043] [PMID: 26344851]
[46]
Zhu, C.; Xu, Y.; Liu, Z.H.; Wan, X.C.; Li, D.X.; Tai, L.L. The antihyperuricemic effect of epigallocatechin-3-gallate (EGCG) on hyperuricemic mice Biomedicine pharmacotherapy = Biomedecine pharmacotherapie, 2018, 97, 168-173.
[47]
Krstić, J.; Trivanović, D.; Mojsilović, S.; Santibanez, J.F. Transforming growth factor-beta and oxidative stress interplay: Implications in tumorigenesis and cancer progression. Oxid. Med. Cell. Longev., 2015, 2015654594
[http://dx.doi.org/10.1155/2015/654594] [PMID: 26078812]
[48]
Dorfmüller, P.; Perros, F.; Balabanian, K.; Humbert, M. Inflammation in pulmonary arterial hypertension. Eur. Respir. J., 2003, 22(2), 358-363.
[http://dx.doi.org/10.1183/09031936.03.00038903] [PMID: 12952274]
[49]
Patel, M.J.; Blazing, M.A. Inflammation and atherosclerosis: disease modulating therapies. Curr. Treat. Options Cardiovasc. Med., 2013, 15(6), 681-695.
[http://dx.doi.org/10.1007/s11936-013-0268-z] [PMID: 23979859]
[50]
Donath, M.Y.; Dalmas, É.; Sauter, N.S.; Böni-Schnetzler, M. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab., 2013, 17(6), 860-872.
[http://dx.doi.org/10.1016/j.cmet.2013.05.001] [PMID: 23747245]
[51]
Jhang, J.J.; Lu, C.C.; Yen, G.C. Epigallocatechin gallate inhibits urate crystals-induced peritoneal inflammation in C57BL/6 mice. Mol. Nutr. Food Res., 2016, 60(10), 2297-2303.
[http://dx.doi.org/10.1002/mnfr.201600106] [PMID: 27234527]
[52]
Xie, H.; Sun, J.; Chen, Y.; Zong, M.; Li, S.; Wang, Y. EGCG Attenuates Uric Acid-Induced Inflammatory and Oxidative Stress Responses by Medicating the NOTCH Pathway. Oxid. Med. Cell. Longev., 2015, 2015214836
[http://dx.doi.org/10.1155/2015/214836] [PMID: 26539255]
[53]
Yu, T.F. Urolithiasis in hyperuricemia and gout. J. Urol., 1981, 126(4), 424-430.
[http://dx.doi.org/10.1016/S0022-5347(17)54561-9] [PMID: 7288928]
[54]
Johnson, R.J.; Bakris, G.L.; Borghi, C.; Chonchol, M.B.; Feldman, D.; Lanaspa, M.A.; Merriman, T.R.; Moe, O.W.; Mount, D.B.; Sanchez Lozada, L.G.; Stahl, E.; Weiner, D.E.; Chertow, G.M. Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation. Am. J. Kidney Dis., 2018, 71(6), 851-865.
[http://dx.doi.org/10.1053/j.ajkd.2017.12.009] [PMID: 29496260]
[55]
Zhu, P.; Liu, Y.; Han, L.; Xu, G.; Ran, J.M. Serum uric acid is associated with incident chronic kidney disease in middle-aged populations: a meta-analysis of 15 cohort studies. PLoS One, 2014, 9(6)e100801
[http://dx.doi.org/10.1371/journal.pone.0100801] [PMID: 24959886]
[56]
El Arem, A.; Thouri, A.; Zekri, M.; Saafi, E.B.; Ghrairi, F.; Zakhama, A.; Achour, L. Nephroprotective effect of date fruit extract against dichloroacetic acid exposure in adult rats Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 2014, 65(177), 184.
[http://dx.doi.org/10.1016/j.fct.2013.12.023]
[57]
Tlili, N.; Feriani, A.; Saadoui, E.; Nasri, N.; Khaldi, A. Capparis spinosa leaves extract: Source of bioantioxidants with nephroprotective and hepatoprotective effects. Biomed. Pharmacother., 2017, 87, 171-179.
[http://dx.doi.org/10.1016/j.biopha.2016.12.052] [PMID: 28056421]
[58]
Ben Saad, H.; Gargouri, M.; Kallel, F.; Chaabene, R.; Boudawara, T.; Jamoussi, K.; Magné, C.; Mounir Zeghal, K.; Hakim, A.; Ben Amara, I. Flavonoid compounds from the red marine alga Alsidium corallinum protect against potassium bromate-induced nephrotoxicity in adult mice. Environ. Toxicol., 2017, 32(5), 1475-1486.
[http://dx.doi.org/10.1002/tox.22368] [PMID: 27658546]
[59]
Crown, O.O.; Ogundele, O.O.; Akinmoladun, A.C.; Famusiwa, C.D.; Josiah, S.S.; Olaleye, M.T.; Akindahunsi, A.A. Effects of Catechin, Quercetin and Taxifolin on Redox Parameters and Metabolites Linked with Renal Health in Rotenone-toxified Rats. Niger. J. Physiol. Sci., 2019, 34(1), 1-10.
[PMID: 31449265]
[60]
Chen, L.L.; Xu, Y. Epigallocatechin gallate attenuates uric acid-induced injury in rat renal interstitial fibroblasts NRK-49F by up-regulation of miR-9. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(21), 7458-7469.
[PMID: 30468495]
[61]
Chung, T.T.; Yu, K.H.; Kuo, C.F.; Luo, S.F.; Chiou, M.J.; Lan, W.C.; Chen, J.S.; Tseng, W.Y.; Hsieh, A.H.; Wang, L.C. Impact of urate-lowering drugs on the progression and recovery from chronic kidney disease among gout patients. Arthritis Res. Ther., 2019, 21(1), 210.
[http://dx.doi.org/10.1186/s13075-019-1993-9] [PMID: 31533805]
[62]
Alberti, K.G.; Zimmet, P.; Shaw, J.; Group, I.D.F.E.T.F.C. IDF Epidemiology Task Force Consensus Group. The metabolic syndrome--a new worldwide definition. Lancet, 2005, 366(9491), 1059-1062.
[http://dx.doi.org/10.1016/S0140-6736(05)67402-8] [PMID: 16182882]
[63]
Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C. Jr International Diabetes Federation Task Force on Epidemiology and Prevention. Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 2009, 120(16), 1640-1645.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192644] [PMID: 19805654]
[64]
Pacifico, L.; Cantisani, V.; Anania, C.; Bonaiuto, E.; Martino, F.; Pascone, R.; Chiesa, C. Serum uric acid and its association with metabolic syndrome and carotid atherosclerosis in obese children. Eur. J. Endocrinol., 2009, 160(1), 45-52.
[http://dx.doi.org/10.1530/EJE-08-0618] [PMID: 18952765]
[65]
Billiet, L.; Doaty, S.; Katz, J.D.; Velasquez, M.T. Review of hyperuricemia as new marker for metabolic syndrome. ISRN Rheumatol., 2014, 2014852954
[http://dx.doi.org/10.1155/2014/852954] [PMID: 24693449]
[66]
Devika, P.T.; Stanely Mainzen Prince, P. Protective effect of (-)-epigallocatechin-gallate (EGCG) on lipid peroxide metabolism in isoproterenol induced myocardial infarction in male Wistar rats: a histopathological study Biomedicine pharmacotherapy = Biomedecine pharmacotherapie, 2008, 62(), 701-708.
[67]
Mejri, F.; Selmi, S.; Martins, A.; Benkhoud, H.; Baati, T.; Chaabane, H.; Njim, L.; Serralheiro, M.L.M.; Rauter, A.P.; Hosni, K. Broad bean (Vicia faba L.) pods: a rich source of bioactive ingredients with antimicrobial, antioxidant, enzyme inhibitory, anti-diabetic and health-promoting properties. Food Funct., 2018, 9(4), 2051-2069.
[http://dx.doi.org/10.1039/C8FO00055G] [PMID: 29589631]
[68]
Koutelidakis, A.E.; Rallidis, L.; Koniari, K.; Panagiotakos, D.; Komaitis, M.; Zampelas, A.; Anastasiou-Nana, M.; Kapsokefalou, M. Effect of green tea on postprandial antioxidant capacity, serum lipids, C-reactive protein and glucose levels in patients with coronary artery disease. Eur. J. Nutr., 2014, 53(2), 479-486.
[http://dx.doi.org/10.1007/s00394-013-0548-0] [PMID: 23793133]
[69]
Ai, Z.; Liu, S.; Qu, F.; Zhang, H.; Chen, Y.; Ni, D. Effect of Stereochemical Configuration on the Transport and Metabolism of Catechins from Green Tea across Caco-2 Monolayers. Molecules, 2019, 24(6)E1185
[http://dx.doi.org/10.3390/molecules24061185] [PMID: 30917581]
[70]
Hao, S.; Zhang, C.; Song, H. Natural Products Improving Hyperuricemia with Hepatorenal Dual Effects. Evid. Based Complement. Alternat. Med., 2016, 20167390504
[http://dx.doi.org/10.1155/2016/7390504] [PMID: 27847526]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy