Skip to main content

Advertisement

Log in

State of charge balancing for distributed batteries in DC microgrids without communication networks

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

State of charge (SoC) balancing and accurate power sharing have been achieved among distributed batteries in a DC microgrid without a communication network by injecting an AC signal. The frequency of the generated signal is proportional to the SoC of a predefined master battery and it is used for the other batteries as a common variable to estimate the SoC and output power of the master battery. Based on modified droop control, the distributed batteries realize a balanced SoC and accurate power sharing regardless of the differences in the line resistance. A communication system is not required. Thus, the system cost is notably reduced. Moreover, to guarantee system reliability, a new master battery selection method is provided to replace the master battery under fault conditions. The effectiveness of the proposed strategy was verified by simulations and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Silva, W.W., Oliveira, T.R., Donoso-Garcia, P.F.: Hybrid distributed decentralized secondary control strategy to attain accurate power sharing and improved voltage restoration in dc microgrids. IEEE Trans. Power Electron. (2019). https://doi.org/10.1109/TPEL.2019.2951012

    Article  Google Scholar 

  2. Peyghami, S., Davari, P., Blaabjerg, F.: System-level reliability-oriented power sharing strategy for DC power systems. IEEE Trans. Ind. Appl. 55, 4865–4875 (2019). https://doi.org/10.1109/TIA.2019.2918049

    Article  Google Scholar 

  3. Guo, F., Wang, L., Wen, C., Zhang, D., Xu, Q.: Distributed voltage restoration and current sharing control in islanded DC microgrid systems without continuous communication. IEEE Trans. Ind. Electron. 67, 3043–3053 (2020). https://doi.org/10.1109/TIE.2019.2907507

    Article  Google Scholar 

  4. Zaery, M., Ahmed, E.M., Orabi, M.: Low operational cost distributed prioritised coordinated control for DC microgrids. IET Smart Grid 2, 233–241 (2019). https://doi.org/10.1049/iet-stg.2018.0240

    Article  Google Scholar 

  5. Kakigano, H., Miura, Y., Ise, T.: Distribution voltage control for DC microgrids using fuzzy control and gain-scheduling technique. IEEE Trans. Power Electron. 28, 2246–2258 (2013). https://doi.org/10.1109/TPEL.2012.2217353

    Article  Google Scholar 

  6. Yang, Q., Jiang, L., Zhao, H., Zeng, H.: Autonomous voltage regulation and current sharing in islanded multi-inverter DC microgrid. IEEE Trans Smart Grid (2017). https://doi.org/10.1109/TSG.2017.2712658

    Article  Google Scholar 

  7. Wang, P., Lu, X., Yang, X., Wang, W., Xu, D.: An improved distributed secondary control method for DC microgrids with enhanced dynamic current sharing performance. IEEE Trans Power Electron 31, 6658–6673 (2016). https://doi.org/10.1109/TPEL.2015.2499310

    Article  Google Scholar 

  8. Hoang, K.D., Lee, H.: Accurate power sharing with balanced battery state of charge in distributed DC microgrid. IEEE Trans. Ind. Electron. 66, 1883–1893 (2019). https://doi.org/10.1109/TIE.2018.2838107

    Article  Google Scholar 

  9. Chen, X., Shi, M., Zhou, J., Zuo, W., Chen, Y., Wen, J., He, H.: Consensus based distributed control for photovoltaic-battery units in a DC microgrid. IEEE Trans. Ind. Electron. (2018). https://doi.org/10.1109/TIE.2018.2880717

    Article  Google Scholar 

  10. Li, C., Dragicevic, T., Plaza, M.G., Andrade, F., Vasquez, J.C., Guerrero, J.M.: Multiagent based distributed control for state-of-charge balance of distributed energy storage in DC microgrids. In: IECON 2014—40th Annual Conference of the IEEE Industrial Electronics society, pp. 2180–2184 (2014)

  11. Morstyn, T., Savkin, A.V., Hredzak, B., Agelidis, V.G.: Multi-agent sliding mode control for state of charge balancing between battery energy storage systems distributed in a DC microgrid. IEEE Trans Smart Grid 9, 4735–4743 (2018). https://doi.org/10.1109/TSG.2017.2668767

    Article  Google Scholar 

  12. Yang, J., Jin, X., Wu, X., Acuna, P., Aguilera, R.P., Morstyn, T., Agelidis, V.G.: Decentralised control method for DC microgrids with improved current sharing accuracy. IET Gener Transm Distrib 11, 696–706 (2017). https://doi.org/10.1049/iet-gtd.2016.0295

    Article  Google Scholar 

  13. Tucci, M., Riverso, S., Vasquez, J.C., Guerrero, J.M., Ferrari-Trecate, G.: A decentralized scalable approach to voltage control of DC islanded microgrids. IEEE Trans. Control Syst. Technol. 24, 1965–1979 (2016). https://doi.org/10.1109/TCST.2016.2525001

    Article  Google Scholar 

  14. Hoang, K.D., Lee, D., Lee, H.: Accurate current sharing and PCC voltage restoration in LVDC microgrid without communication network. In: 2018 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2067–2072 (2018)

  15. Shahbazi, M., Kazemtabrizi, B., Dent, C.: Coordinated control of DC voltage magnitudes and state of charges in a cluster of DC microgrids. In: 2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), pp. 1–5 (2016)

  16. Xia, Y., Yu, M., Yang, P., Peng, Y., Wei, W.: Generation-storage coordination for islanded DC microgrids dominated by PV generators. IEEE Trans. Energy Convers. 34, 130–138 (2019). https://doi.org/10.1109/TEC.2018.2860247

    Article  Google Scholar 

  17. Diaz, N.L., Dragicevic, T., Vasquez, J.C., Guerrero, J.M.: Intelligent distributed generation and storage units for DC microgrids—a new concept on cooperative control without communications beyond droop control. IEEE Trans. Smart Grid 5, 2476–2485 (2014). https://doi.org/10.1109/TSG.2014.2341740

    Article  Google Scholar 

  18. Lu, X., Sun, K., Guerrero, J.M., Vasquez, J.C., Huang, L.: State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications. IEEE Trans. Ind. Electron. 61, 2804–2815 (2014). https://doi.org/10.1109/TIE.2013.2279374

    Article  Google Scholar 

  19. Lu, X., Sun, K., Guerrero, J.M., Vasquez, J.C., Huang, L.: Double-quadrant state-of-charge-based droop control method for distributed energy storage systems in autonomous DC microgrids. IEEE Trans. Smart Grid 6, 147–157 (2015). https://doi.org/10.1109/TSG.2014.2352342

    Article  Google Scholar 

  20. Huang, P.H., Liu, P.C., Xiao, W., El, M.M.S.: A novel droop-based average voltage sharing control strategy for DC microgrids. IEEE Trans. Smart Grid 6, 1096–1106 (2015). https://doi.org/10.1109/TSG.2014.2357179

    Article  Google Scholar 

  21. Hoang, K.D., Choi, S., Lee, H.: Battery state of charge balancing with accurate power sharing in DC microgrid. In: 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–5 (2019)

  22. Peyghami, S., Mokhtari, H., Blaabjerg, F.: Decentralized load sharing in a low-voltage direct current microgrid with an adaptive droop approach based on a superimposed frequency. IEEE J. Emerg. Sel. Top. Power Electron. 5, 1205–1215 (2017). https://doi.org/10.1109/JESTPE.2017.2674300

    Article  Google Scholar 

  23. Peyghami, S., Davari, P., Mokhtari, H., Loh, P.C., Blaabjerg, F.: Synchronverter-enabled DC power sharing approach for LVDC microgrids. IEEE Trans. Power Electron. 32, 8089–8099 (2017). https://doi.org/10.1109/TPEL.2016.2632441

    Article  Google Scholar 

  24. Peyghami, S., Mokhtari, H., Blaabjerg, F.: Autonomous power management in LVDC microgrids based on a superimposed frequency droop. IEEE Trans. Power Electron. 33, 5341–5350 (2018). https://doi.org/10.1109/TPEL.2017.2731785

    Article  Google Scholar 

  25. Berglund, F., Zaferanlouei, S., Korpås, M., Uhlen, K.: Optimal operation of battery storage for a subscribed capacity-based power tariff prosumer—a Norwegian case study. Energies 12, 4450 (2019). https://doi.org/10.3390/en12234450

    Article  Google Scholar 

  26. Kang, W., Chen, M., Li, B., Chen, F., Lai, W., Lin, H., Zhao, B.: Distributed reactive power control and SOC sharing method for battery energy storage system in microgrids. IEEE Access 7, 60707–60720 (2019). https://doi.org/10.1109/ACCESS.2019.2910352

    Article  Google Scholar 

  27. Dam, D., Lee, H.: A power distributed control method for proportional load power sharing and bus voltage restoration in a DC microgrid. IEEE Trans. Ind. Appl. 54, 3616–3625 (2018). https://doi.org/10.1109/TIA.2018.2815661

    Article  Google Scholar 

  28. Kirakosyan, A., El-Saadany, E.F., Moursi, M.S.E., Yazdavar, A.H., Al-Durra, A.: Communication-free current sharing control strategy for DC microgrids and its application for AC/DC hybrid microgrids. IEEE Trans. Power Syst. 35, 140–151 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NRF of Korea Grant under Grant NRF-2018R1D1A1A09081779 and in part by the KETEP and the MOTIE under Grant 20194030202310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Hee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, K.D., Lee, HH. State of charge balancing for distributed batteries in DC microgrids without communication networks. J. Power Electron. 21, 405–415 (2021). https://doi.org/10.1007/s43236-020-00188-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00188-3

Keywords

Navigation