Skip to main content
Log in

A Solid-State Near-IR Laser for Spin-Exchange Optical Pumping

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A mean of spin-exchange optical pumping is considered for the polarization of noble gases using a tunable laser. The possibility is considered of creating a solid-state source of laser radiation with dispersive elements in its cavity in order to achieve spin-exchange optical pumping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Dmitriev, S.P., Dovator, N.A., and Kartoshkin, V.A., Tech. Phys. Lett., 2016, vol. 42, no. 2, p. 85.

    Article  ADS  Google Scholar 

  2. Dmitriev, S.P., Dovator, N.A., Pestov, E.N., et al., Tech. Phys. Lett., 2018, vol. 44, no. 10, p. 860.

    Article  ADS  Google Scholar 

  3. Knize, R.J., Wu, Z., and Happer, W., Adv. At. Mol. Phys., 1988, vol. 24, no. 1, p. 223.

    Article  ADS  Google Scholar 

  4. Walker, T.G. and Happer, W., Rev. Mod. Phys., 1997, vol. 69, no. 2, p. 629.

    Article  ADS  Google Scholar 

  5. Gentile, T.R., Nacher, P.J., Saam, B., and Walker, T.G., Rev. Mod. Phys., 2017, vol. 89, no. 4, 045004.

    Article  ADS  Google Scholar 

  6. Chen, L., Zhoua, B., Lei, G., et al., AIP Adv., 2017, vol. 7, 115101.

    Article  ADS  Google Scholar 

  7. Gaede, H.C., Song, Y.Q., Taylor, R.E., et al., Appl. Magn. Reson., 1995, vol. 8, p. 373.

    Article  Google Scholar 

  8. Rohan, S., John, C., Wang, Z., et al., Sci. Rep., 2020, vol. 10, p. 1.

    Article  ADS  Google Scholar 

  9. Albert, MS., Catesf, G.D., Driehuyst, B., et al., Lett. Nat., 1994, vol. 370, p. 199.

    Article  Google Scholar 

  10. Roos, J., Mcadams, H.P., Kaushik, S.S., et al., Magn. Reson. Imaging Clin. North Am., 2015, vol. 23, no. 2, p. 217.

    Article  Google Scholar 

  11. Razhev, A.M., Churkin, D.S., Kargapol’tsev, E.S., et al., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 7, p. 776.

    Article  Google Scholar 

  12. Badikov, V., Badikov, D., and Doroshenko, M., Fotonika, 2010, vol. 20, no. 2, p. 8.

    Google Scholar 

  13. Osad’ko, I.S., Izv. Akad. Nauk, Ser. Fiz., 2019, vol. 83, no. 12, p. 1594.

    Google Scholar 

  14. Karimullin, K.R., Arzhanov, A.I., and Naumov, A.V., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 11, p. 1478.

    Article  Google Scholar 

  15. Sazonov, S.V., Bull. Russ. Acad. Sci.: Phys., 2011, vol. 75, no. 1, p. 105.

    Article  Google Scholar 

  16. Lefler, Sh., Fotonika, 2015, vol. 54, no. 6, p. 48.

    Google Scholar 

  17. Kartoshkin, V.A., Opt. Spectrosc., 2016, vol. 121, no. 3, p. 327.

    Article  ADS  Google Scholar 

  18. Kartoshkin, V.A., Opt. Spectrosc., 2010, vol. 108, no. 6, p. 866.

    Article  ADS  Google Scholar 

  19. Driehuys, B., Cates, G.D., Miron, E., et al., Appl. Phys. Lett., 1996, vol. 69, p. 1668.

    Article  ADS  Google Scholar 

  20. Oros, A.M. and Shah, N.J., Phys. Med. Biol., 2004, vol. 49, p. 105.

    Article  Google Scholar 

  21. Nelson, I., Chann, B., and Walker, T.G., Appl. Phys. Lett., 2000, vol. 76, no. 11, p. 1356.

    Article  ADS  Google Scholar 

  22. Ksenofontov, M.A. and Polyakov, A.V., Fotonika, 2010, vol. 22, no. 4, p. 44.

    Google Scholar 

  23. Antipov, A. and Putilov, A., in Proc. VII Int. Conf. MMNSI, Suzdal, 2018, p. 64.

  24. Putilov, A., Antipov, A., Shepelev, A., et al., J. Phys.: Conf. Ser., 2019, vol. 1331, no. 1, 012016.

    Google Scholar 

  25. Steck, A.A., Rubidium 85 D line data, 2008. https:// steck.us/alkalidata/rubidium85numbers.pdf.

  26. Steck, A.A., Rubidium 87 D line data, 2001. https:// steck.us/alkalidata/rubidium87numbers.pdf.

  27. Teppitaksak, A., Minassian, A., Thomas, M., and Damzen, J., Opt. Express, 2014, vol. 22, 16386.

    Article  ADS  Google Scholar 

  28. Putilov, A., Antipov, A., and Shepelev, A., EPJ Web Conf., 2019, vol. 220, 03026.

  29. Happer, W., Miron, E., Schaefer, S., et al., Phys. Rev. A: At., Mol., Opt. Phys., 1984, vol. 29, p. 3092.

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 19-29-10022; and the RF Ministry of Science and Higher Education within the State assignment no. 075-00842-20-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Antipov.

Ethics declarations

The authors declare they have no conflict of interest.

Additional information

Translated by G. Dedkov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipov, A.A., Putilov, A.G., Osipov, A.V. et al. A Solid-State Near-IR Laser for Spin-Exchange Optical Pumping. Bull. Russ. Acad. Sci. Phys. 84, 1359–1361 (2020). https://doi.org/10.3103/S1062873820110052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820110052

Navigation