Skip to main content
Log in

The Tippedisk: a Tippetop Without Rotational Symmetry

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The aim of this paper is to introduce the tippedisk to the theoretical mechanics community as a new mechanical-mathematical archetype for friction induced instability phenomena. We discuss the modeling and simulation of the tippedisk, which is an inhomogeneous disk showing an inversion phenomenon similar but more complicated than the tippetop. In particular, several models with different levels of abstraction, parameterizations and force laws are introduced. Moreover, the numerical simulations are compared qualitatively with recordings from a high-speed camera. Unlike the tippetop, the tippedisk has no rotational symmetry, which greatly complicates the three-dimensional nonlinear kinematics. The governing differential equations, which are presented here in full detail, describe all relevant physical effects and serve as a starting point for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. http://www.thephitop.com/

  2. Youtube: Orbit Spinning Tops (Youtube: Orbit Spinning Tops)

  3. Youtube: Spinning Disk Trick (Youtube: Spinning Disk Trick)

  4. Youtube: Spinning Disk Trick Solution (Youtube: Spinning Disk Trick Solution)

  5. https://rotations.berkeley.edu/a-tumbling-t-handle-in-space/

References

  1. Acary, V. and Brogliato, B., Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics, Lect. Notes Appl. Comput. Mech., vol. 35, Berlin: Springer, 2008.

    Book  Google Scholar 

  2. Ashbaugh, M. S., Chicone, C. C., and Cushman, R. H., The Twisting Tennis Racket, J. Dynam. Differential Equations, 1991, vol. 3, no. 1, pp. 67–85.

    Article  MathSciNet  Google Scholar 

  3. Borisov, A. V., Kilin, A. A., and Karavaev, Yu. L., On the Retrograde Motion of a Rolling Disk, Physics-Uspekhi, 2017, vol. 60, no. 9, pp. 931–934; see also: Uspekhi Fiz. Nauk, 2017, vol. 187, no. 9, pp. 1003-1006.

    Article  Google Scholar 

  4. Borisov, A. V. and Mamaev, I. S., Strange Attractors in Rattleback Dynamics, Physics-Uspekhi, 2003, vol. 46, no. 4, pp. 393–403; see also: Uspekhi Fiz. Nauk, 2003, vol. 173, no. 4, pp. 407-418.

    Article  Google Scholar 

  5. Borisov, A. V., Mamaev, I. S., and Kilin, A. A., Dynamics of Rolling Disk, Regul. Chaotic Dyn., 2003, vol. 8, no. 2, pp. 201–212.

    Article  MathSciNet  Google Scholar 

  6. Bou-Rabee, N. M., Marsden, J. E., and Romero, L. A., Tippe Top Inversion As a Dissipation-Induced Instability, SIAM J. Appl. Dyn. Syst., 2004, vol. 3, no. 3, pp. 352–377.

    Article  MathSciNet  Google Scholar 

  7. Cohen, C. M., The Tippe Top Revisited, Am. J. Phys., 1977, vol. 45, no. 1, pp. 12–17.

    Article  Google Scholar 

  8. Garcia, A. and Hubbard, M., Spin Reversal of the Rattleback: Theory and Experiment, Proc. Roy. Soc. London Ser. A, 1988, vol. 418, no. 1854, pp. 165–197.

    MathSciNet  Google Scholar 

  9. Glocker, Ch., Set-Valued Force Laws: Dynamics of Non-smooth Systems, Lect. Notes Appl. Comput. Mech., vol. 1, Berlin: Springer, 2013.

    MATH  Google Scholar 

  10. Glocker, Ch., Simulation of Hard Contacts with Friction: An Iterative Projection Method, in Recent Trends in Dynamical Systems, A. Johann, H.-P. Kruse, F. Rupp, S. Schmitz (Eds.), Springer Proc. Math. Stat., vol. 35, Basel: Springer, 2013, pp. 493–515.

    Chapter  Google Scholar 

  11. Hemingway, E. G. and O’Reilly, O. M., Perspectives on Euler Angle Singularities, Gimbal Lock, and the Orthogonality of Applied Forces and Applied Moments, Multibody Syst. Dyn., 2018, vol. 44, no. 1, pp. 31–56.

    Article  MathSciNet  Google Scholar 

  12. Jachnik, J., Spinning and Rolling of an Unbalanced Disk, Master’s Thesis, London: Imperial College London, 2011.

  13. Karapetyan, A. V. and Zobova, A. A., Tippe-Top on Visco-Elastic Plane: Steady-State Motions, Generalized Smale Diagrams and Overturns, Lobachevskii J. Math., 2017, vol. 38, no. 6, pp. 1007–1013.

    Article  MathSciNet  Google Scholar 

  14. Kessler, P. and O’Reilly, O. M., The Ringing of Euler’s Disk, Regul. Chaotic Dyn., 2002, vol. 7, no. 1, pp. 49–60.

    Article  MathSciNet  Google Scholar 

  15. Le Saux, C., Leine, R. I., and Glocker, Ch., Dynamics of a Rolling Disk in the Presence of Dry Friction, J. Nonlinear Sci., 2005, vol. 15, no. 1, pp. 27–61.

    Article  MathSciNet  Google Scholar 

  16. Leine, R. I., Experimental and Theoretical Investigation of the Energy Dissipation of a Rolling Disk during Its Final Stage of Motion, Arch. Appl. Mech., 2009, vol. 79, no. 11, pp. 1063–1082.

    Article  Google Scholar 

  17. Leine, R. I. and Glocker, Ch., A Set-Valued Force Law for Spatial Coulomb – Contensou Friction, Eur. J. Mech. A Solids, 2003, vol. 22, no. 2, pp. 193–216.

    Article  MathSciNet  Google Scholar 

  18. Leine, R. I. and Nijmeijer, H., Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Lect. Notes Appl. Comput. Mech., vol. 18, Berlin: Springer, 2004.

    Book  Google Scholar 

  19. Magnus, K., Kreisel: Theorie und Anwendungen, Berlin: Springer, 1971.

    Book  Google Scholar 

  20. Moffatt, H., Euler’s Disk and Its Finite-Time Singularity, Nature, 2000, vol. 404, no. 6780, pp. 833–834.

    Article  Google Scholar 

  21. Moffatt, K. and Shimomura, Y., Classical Dynamics: Spinning Eggs — A Paradox Resolved, Nature, 2002, vol. 416, no. 6879, pp. 385–386.

    Article  Google Scholar 

  22. Moffatt, K., Shimomura, Y., and Branicki, M., Dynamics of an Axisymmetric Body Spinning on a Horizontal Surface: 1. Stability and the Gyroscopic Approximation, Proc. Roy. Soc. London Ser. A, 2004, vol. 460, no. 2052, pp. 3643–3672.

    Article  MathSciNet  Google Scholar 

  23. Moreau, J. J., Unilateral Contact and Dry Friction in Finite Freedom Dynamics, in Non-Smooth Mechanics and Applications, J. J. Moreau, P. D. Panagiotopoulos (Eds.), CISM Courses and Lectures, vol. 302, Wien: Springer, 1988, pp. 1–82.

    Chapter  Google Scholar 

  24. Nützi, G. E., Non-Smooth Granular Rigid Body Dynamics with Applications to Chute Flows, PhD Thesis, Zürich: ETH Zürich, 2016.

  25. O’Reilly, O. M., The Dynamics of Rolling Disks and Sliding Disks, Nonlinear Dyn., 1996, vol. 10, no. 3, pp. 287–305.

    Article  Google Scholar 

  26. Poinsot, L., Théorie nouvelle de la rotation des corps, Paris: Bachelier, 1834.

    Google Scholar 

  27. Przybylska, M. and Rauch-Wojciechowski, S., Dynamics of a Rolling and Sliding Disk in a Plane: Asymptotic Solutions, Stability and Numerical Simulations, Regul. Chaotic Dyn., 2016, vol. 21, no. 2, pp. 204–231.

    Article  MathSciNet  Google Scholar 

  28. Rauch-Wojciechowski, S., What Does It Mean to Explain the Rising of the Tippe Top?, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 316–331.

    Article  MathSciNet  Google Scholar 

  29. Rockafellar, R. T., Convex Analysis, Princeton, N.J.: Princeton Univ. Press, 1970.

    Book  Google Scholar 

  30. Tiaki, M. M., Hosseini, S. A. A., and Zamanian, M., Nonlinear Forced Vibrations Analysis of Overhung Rotors with Unbalanced Disk, Arch. Appl. Mech., 2016, vol. 86, no. 5, pp. 797–817.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simon Sailer, Simon R. Eugster or Remco I. Leine.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

70E18, 70K20, 70E50

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sailer, S., Eugster, S.R. & Leine, R.I. The Tippedisk: a Tippetop Without Rotational Symmetry. Regul. Chaot. Dyn. 25, 553–580 (2020). https://doi.org/10.1134/S1560354720060052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354720060052

Keywords

Navigation