Skip to main content
Log in

Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The motion of a spherical robot with periodically changing moments of inertia, internal rotors and a displaced center of mass is considered. It is shown that, under some restrictions on the displacement of the center of mass, the system of interest features chaotic dynamics due to separatrix splitting. A stability analysis is made of the upper equilibrium point of the ball and of the periodic solution arising in its neighborhood, in the case of periodic rotation of the rotors. It is shown that the lower equilibrium point can become unstable in the case of fixed rotors and periodically changing moments of inertia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Instead of Eq. (2.4) one can use an equation for the precession angle \(\psi\).

  2. In robotics problems the characteristic times of motion are such that it suffices to numerically show linear stability and, as a rule, no rigorous analytical investigation of the secular (nonlinear) stability is required.

References

  1. Altshuler, E., Pastor, J. M., Garcimartín, A., Zuriguel, I., and Maza, D., Vibrot, a Simple Device for the Conversion of Vibration into Rotation Mediated by Friction: Preliminary Evaluation, PLoS One, 2013, vol. 8, no. 8, e67838.

    Google Scholar 

  2. Arnold, V. I., Ordinary Differential Equations, Berlin: Springer, 2006.

    Google Scholar 

  3. Bai, Y., Svinin, M., and Yamamoto, M., Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot, Regul. Chaotic Dyn., 2018, vol. 23, no. 4, pp. 372–388.

    MathSciNet  MATH  Google Scholar 

  4. Belichenko, M. V., On the Stability of Pendulum-Type Motions in the Approximate Problem of Dynamics of a Lagrange Top with a Vibrating Suspension Point, Russian J. Nonlinear Dyn., 2018, vol. 14, no. 2, pp. 243–263.

    MathSciNet  MATH  Google Scholar 

  5. Bizyaev, I. A., The Inertial Motion of a Roller Racer, Regul. Chaotic Dyn., 2017, vol. 22, no. 3, pp. 239–247.

    MathSciNet  MATH  Google Scholar 

  6. Bizyaev I. A., Nonintegrability and obstructions to the Hamiltonianization of a nonholonomic Chaplygin top, Dokl. Math., 2014, vol. 90, no. 2, pp. 631–634; see also: Dokl. Akad. Nauk, 2014, vol. 458, no. 4, pp. 398-401.

    MathSciNet  MATH  Google Scholar 

  7. Bizyaev, I., Bolsinov, A., Borisov, A., and Mamaev, I., Topology and Bifurcations in Nonholonomic Mechanics, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2015, vol. 25, no. 10, 1530028, 21 pp.

    MathSciNet  MATH  Google Scholar 

  8. Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., Chaplygin Sleigh with Periodically Oscillating Internal Mass, Europhys. Lett., 2017, vol. 119, no. 6, 60008, 7 pp.

    Google Scholar 

  9. Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., The Chaplygin Sleigh with Friction Moving due to Periodic Oscillations of an Internal Mass, Nonlinear Dyn., 2019, vol. 95, no. 1, pp. 699–714.

    Google Scholar 

  10. Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., Exotic Dynamics of Nonholonomic Roller Racer with Periodic Control, Regul. Chaotic Dyn., 2018, vol. 23, no. 7–8, pp. 983–994.

    MathSciNet  MATH  Google Scholar 

  11. Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., Different Models of Rolling for a Robot Ball on a Plane As a Generalization of the Chaplygin Ball Problem, Regul. Chaotic Dyn., 2019, vol. 24, no. 5, pp. 560–582.

    MathSciNet  MATH  Google Scholar 

  12. Bolotnik, N. N., Zeidis, I. M., Zimmermann, K., and Yatsun, S. F., Dynamics of Controlled Motion of Vibration-Driven Systems, J. Comput. Syst. Sci. Int., 2006, vol. 45, no. 5, pp. 831–840; see also: Izv. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2006, vol. , no. 5, pp. 157-167.

    MATH  Google Scholar 

  13. Bolotnik, N. N., Chernousko, F. L., Kostin, G. V., and Pfeiffer, F., Regular Motion of a Tube-Crawling Robot in a Curved Tube, Mech. Based Des. Struct. Mach., 2002, vol. 30, no. 4, pp. 431–462.

    Google Scholar 

  14. Borisov, A. V., Kazakov, A. O., and Pivovarova, E. N., Regular and Chaotic Dynamics in the Rubber Model of a Chaplygin Top, Nelin. Dinam., 2017, vol. 13, no. 2, pp. 277–297 (Russian).

    MATH  Google Scholar 

  15. Borisov, A. V., Kazakov, A. O., and Sataev, I. R., The Reversal and Chaotic Attractor in the Nonholonomic Model of Chaplygin’s Top, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 718–733.

    MathSciNet  MATH  Google Scholar 

  16. Borisov, A. V., Kilin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., Stabilization of the Motion of a Spherical Robot Using Feedbacks, Appl. Math. Model., 2019, vol. 69, pp. 583–592.

    MathSciNet  MATH  Google Scholar 

  17. Borisov, A. V., Kilin, A. A., and Pivovarova, E. N., Speedup of the Chaplygin Top by Means of Rotors, Dokl. Phys., 2019, vol. 64, no. 3, pp. 120–124; see also: Dokl. Akad. Nauk, 2019, vol. 485, no. 3, pp. 285-289.

    Google Scholar 

  18. Borisov, A. V. and Mamaev, I. S., Symmetries and Reduction in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 553–604.

    MathSciNet  MATH  Google Scholar 

  19. Borisov, A. V. and Mamaev, I. S., Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems, Regul. Chaotic Dyn., 2008, vol. 13, no. 5, pp. 443–490.

    MathSciNet  MATH  Google Scholar 

  20. Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 277–328.

    MathSciNet  MATH  Google Scholar 

  21. Borisov, A. V., Mamaev, I. S., and Vetchanin, E. V., Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation, Regul. Chaotic Dyn., 2018, vol. 23, no. 4, pp. 480–502.

    MathSciNet  MATH  Google Scholar 

  22. Broer, H. and Simó, C., Hill’s Equation with Quasi-Periodic Forcing: Resonance Tongues, Instability Pockets and Global Phenomena, Bol. Soc. Brasil. Mat. (N. S.), 1998, vol. 29, no. 2, pp. 253–293.

    MathSciNet  MATH  Google Scholar 

  23. Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., vol. 42, New York: Springer, 1983.

    MATH  Google Scholar 

  24. Hairer, E., Lubich, Ch., and Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Ser. Comput. Math., vol. 31, New York: Springer, 2006.

    MATH  Google Scholar 

  25. Ilin, K. I., Moffatt, H. K., and Vladimirov, V. A., Dynamics of a Rolling Robot, Proc. Natl. Acad. Sci. USA, 2017, vol. 114, no. 49, pp. 12858–12863.

    MathSciNet  MATH  Google Scholar 

  26. Ivanova, T. B., The Rolling of a Homogeneous Ball with Slipping on a Horizontal Rotating Plane, Russian J. Nonlinear Dyn., 2019, vol. 15, no. 2, pp. 171–178.

    MathSciNet  MATH  Google Scholar 

  27. Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., Controlled Motion of a Spherical Robot of Pendulum Type on an Inclined Plane, Dokl. Phys., 2018, vol. 63, no. 7, pp. 302–306; see also: Dokl. Akad. Nauk, 2018, vol. 481, no. 3, pp. 258-263.

    Google Scholar 

  28. Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., Controlled Motion of a Spherical Robot with Feedback: 1, J. Dyn. Control Syst., 2018, vol. 24, no. 3, pp. 497–510.

    MathSciNet  MATH  Google Scholar 

  29. Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., Controlled Motion of a Spherical Robot with Feedback: 2, J. Dyn. Control Syst., 2019, vol. 25, no. 1, pp. 1–16.

    MathSciNet  MATH  Google Scholar 

  30. Kapitza, P. L., Pendulum with a Vibrating Suspension, Usp. Fiz. Nauk, 1965, vol. 44, pp. 726–737 (Russian).

    Google Scholar 

  31. Karavaev, Yu. L. and Kilin, A. A., Nonholonomic Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform: Theory and Experiments, Proc. Steklov Inst. Math., 2016, vol. 295, pp. 158–167; see also: Tr. Mat. Inst. Steklova, 2016, vol. 295, pp. 174-183.

    MathSciNet  MATH  Google Scholar 

  32. Karavaev, Yu. L. and Kilin, A. A., The Dynamics of a Spherical Robot of Combined Type by Periodic Control Actions, Russian J. Nonlinear Dyn., 2019, vol. 15, no. 4, pp. 497–504.

    MathSciNet  MATH  Google Scholar 

  33. Karavaev, Yu. L., Kilin, A. A., and Klekovkin, A. V., The Dynamical Model of the Rolling Friction of Spherical Bodies on a Plane without Slipping, Nelin. Dinam., 2017, vol. 13, no. 4, pp. 599–609 (Russian).

    MathSciNet  MATH  Google Scholar 

  34. Kazakov, A. O., Strange Attractors and Mixed Dynamics in the Problem of an Unbalanced Rubber Ball Rolling on a Plane, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 508–520.

    MathSciNet  MATH  Google Scholar 

  35. Kholostova, O. V., On the Periodic Motion of Lagrange’s Top with Vibrating Suspension, Mech. Solids, 2002, no. 1, pp. 26–38; see also: Izv. Akad. Nauk. Mekh. Tverd. Tela, 2002, vol. , no. 1, pp. 34-48.

    Google Scholar 

  36. Kilin, A. A. and Karavaev, Yu. L., The Kinematic Control Model for a Spherical Robot with an Unbalanced Internal Omniwheel Platform, Nelin. Dinam., 2014, vol. 10, no. 4, pp. 497–511 (Russian).

    MATH  Google Scholar 

  37. Kilin, A. A. and Karavaev, Yu. L., Experimental Research of Dynamics of Spherical Robot of Combined Type, Nelin. Dinam., 2015, vol. 11, no. 4, pp. 721–734 (Russian).

    MATH  Google Scholar 

  38. Kilin, A. A. and Pivovarova, E. N., Chaplygin Top with a Periodic Gyrostatic Moment, Rus. J. Math. Phys., 2018, vol. 25, no. 4, pp. 509–524.

    MathSciNet  MATH  Google Scholar 

  39. Kilin, A. A. and Pivovarova, E. N., The Rolling Motion of a Truncated Ball without Slipping and Spinning on a Plane, Regul. Chaotic Dyn., 2017, vol. 22, no. 3, pp. 298–317.

    MathSciNet  MATH  Google Scholar 

  40. Kilin, A. A. and Pivovarova, E. N., Integrable Nonsmooth Nonholonomic Dynamics of a Rubber Wheel with Sharp Edges, Regul. Chaotic Dyn., 2018, vol. 23, no. 7–8, pp. 887–907.

    MathSciNet  MATH  Google Scholar 

  41. Kilin, A. A. and Pivovarova, E. N., Qualitative Analysis of the Nonholonomic Rolling of a Rubber Wheel with Sharp Edges, Regul. Chaotic Dyn., 2019, vol. 24, no. 2, pp. 212–233.

    MathSciNet  MATH  Google Scholar 

  42. Kilin, A. A. and Pivovarova, E. N., Stability and Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base, Regul. Chaotic. Dyn., 2020, vol. 25, no. 6, pp. 729–752.

    MathSciNet  Google Scholar 

  43. Kim, S.-Y. and Kim, Y., Dynamic Stabilization in the Double-Well Duffing Oscillator, Phys. Rev. E, 2000, vol. 61, no. 6, pp. 6517–6520.

    Google Scholar 

  44. Kozlov, V. V., On Randomization of Plane Parallel Flow of an Ideal Fluid, Mosc. Univ. Mech. Bull., 1991, vol. 46, no. 1, pp. 29–32; see also: Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1991, vol. , no. 1, pp. 72-76.

    MATH  Google Scholar 

  45. Mamaev, I. S. and Vetchanin, E. V., Dynamics of Rubber Chaplygin Sphere under Periodic Control, Regul. Chaotic Dyn., 2020, vol. 25, no. 2, pp. 215–236.

    MathSciNet  MATH  Google Scholar 

  46. Markeev, A. P. and Sukhoruchkin, D. A., On the Dynamics of a Pendulum Mounted on a Movable Platform, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2018, vol. 28, no. 2, pp. 240–251 (Russian).

    MATH  Google Scholar 

  47. Markeev, A. P., The Stability of the Rotation of a Top with a Cavity Filled with Liquid, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1985, vol. 20, no. 3, pp. 19–26 (Russian).

    Google Scholar 

  48. Markeyev, A. P., The Equations of the Approximate Theory of the Motion of a Rigid Body with a Vibrating Suspension Point, J. Appl. Math. Mech., 2011, vol. 75, no. 2, pp. 132–139; see also: Prikl. Mat. Mekh., 2011, vol. 75, no. 2, pp. 193-203.

    MathSciNet  MATH  Google Scholar 

  49. Mityushov, E. A., Misyura, N. E., and Berestova, S. A., Quaternion Model of Programmed Control over Motion of a Chaplygin Ball, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2019, vol. 29, no. 3, pp. 408–421 (Russian).

    MATH  Google Scholar 

  50. Morinaga, A., Svinin, M., and Yamamoto, M., A Motion Planning Strategy for a Spherical Rolling Robot Driven by Two Internal Rotors, IEEE Trans. on Robotics, 2014, vol. 30, no. 4, pp. 993–1002.

    Google Scholar 

  51. Pivovarova, E. N., Stability Analysis of Steady Motions of a Spherical Robot of Combined Type, Russian J. Nonlinear Dyn., 2017, vol. 13, no. 4, pp. 611–623.

    MathSciNet  MATH  Google Scholar 

  52. Putkaradze, V. and Rogers, S., On the Dynamics of a Rolling Ball Actuated by Internal Point Masses, Meccanica, 2018, vol. 53, no. 15, pp. 3839–3868.

    MathSciNet  Google Scholar 

  53. Putkaradze, V. and Rogers, S. M., On the Normal Force and Static Friction Acting on a Rolling Ball Actuated by Internal Point Masses, Regul. Chaotic Dyn., 2019, vol. 24, no. 2, pp. 145–170.

    MathSciNet  MATH  Google Scholar 

  54. Safonov, A. I. and Kholostova, O. V., On Periodic Motions of a Symmetrical Satellite in an Orbit with Small Eccentricity in the Case of Multiple Combinational Resonance of the Third and Fourth Orders, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2018, vol. 28, no. 3, pp. 373–394.

    MATH  Google Scholar 

  55. Stephenson, A., On a New Type of Dynamical Stability, Proc. Manchester Literary Philos. Soc., 1908, vol. 52, no. 8, pp. 1–10.

    MATH  Google Scholar 

  56. Treschev, D. and Zubelevich, O., Introduction to the Perturbation Theory of Hamiltonian Systems, Springer Monogr. Math., Berlin: Springer, 2010.

    MATH  Google Scholar 

  57. Yudovich, V. I., Vibrodynamics and Vibrogeometry in Mechanical Systems with Constraints, Uspekhi Mekh., 2006, vol. 4, no. 3, pp. 26–158 (Russian).

    Google Scholar 

  58. Zhan, X., Xu, J., and Fang, H., Planar Locomotion of a Vibration-Driven System with Two Internal Masses, Appl. Math. Model., 2016, vol. 40, no. 2, pp. 871–885.

    MathSciNet  MATH  Google Scholar 

  59. Zhan, X., Xu, J., and Fang, H., A Vibration-Driven Planar Locomotion Robot-Shell, Robotica, 2018, vol. 36, no. 9, pp. 1402–1420.

    Google Scholar 

  60. Zimmermann, K., Zeidis, I., and Behn, C., Mechanics of Terrestrial Locomotion with a Focus on Nonpedal Motion Systems, Berlin: Springer, 2009.

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank to Prof. A. A. Kilin and I. A. Bizyaev for useful discussions.

Funding

The work of E. M. Artemova (Section 3) was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of Russia (Project FEWS-2020-0009). The work of Yu. L. Karavaev (Introduction and Section 2) was supported by the Russian Science Foundation under grant 18-71-00096. The work of I. S. Mamaev (Section 5) was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of Russia (Project FZZN-2020-0011) The work of E. V. Vetchanin (Section 4) was supported by the Russian Science Foundation under grant 18-71-00111.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elizaveta M. Artemova, Yury L. Karavaev, Ivan S. Mamaev or Evgeny V. Vetchanin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

37J60, 37C60

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemova, E.M., Karavaev, Y.L., Mamaev, I.S. et al. Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass. Regul. Chaot. Dyn. 25, 689–706 (2020). https://doi.org/10.1134/S156035472006012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156035472006012X

Keywords

Navigation