Skip to main content
Log in

Chitosan-Mediated Changes in dry Matter, Total Phenol Content and Essential Oil Constituents of two Origanum Species under Water Deficit Stress

Chitosan-vermittelte Veränderungen der Trockenmasse, des Gesamtphenolgehalts und der ätherischen Ölbestandteile zweier Origanum-Arten unter Wasserstress

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Origanum is one of the most important medicinal plants used worldwide due to the economic importance, quantity and quality of essential oil and antioxidant properties. Drought is one of the major abiotic stresses that cause deleterious damage to plants. As a bio-elicitor, chitosan prevents severe damage to plants under stress conditions by triggering plant defense mechanisms. To investigate the effects of chitosan application and water deficit stress on growth, yield and secondary metabolites of origanum, a greenhouse study was performed in a factorial experiment based on randomized complete block design (RCBD) with three replications. The studied factors consisted of foliar application of chitosan at three levels (0, 250 and 500 mg/L), under well-watered and water deficit stress conditions in two origanum species (Origanum majorana and Origanum vulgare). The application of water deficit stress and foliar treatment with chitosan (three steps) was performed three weeks before flowering. Results showed that the water deficit stress reduced the plant dry weight, while increased total phenol and essential oil contents. However, foliar application of chitosan at 500 mg/L under water deficit stress conditions increased dry weight of shoots, and phenol content. Application of chitosan at 250 mg/L increased the content of essential oil compared to the control. Results also showed that application of chitosan as a bio-elicitor can reduce the adverse effects of water deficit stress on marjoram plant. The analysis of GC/MS apparatus revealed that 33 compounds were identified in essential oil, in which γ‑terpinene, cis-sabinene hydrate and terpinolene were the dominant in the oil of both origanum species.

Zusammenfassung

Origanum-Arten zählen aufgrund der wirtschaftlichen Bedeutung, der Menge und Qualität des ätherischen Öls und der antioxidativen Eigenschaften zu den wichtigsten weltweit verwendeten Heilpflanzen. Trockenheit ist eine der größten abiotischen Belastungen, die Schäden an Pflanzen verursachen. Chitosan verhindert unter Stressbedingungen schwere Schäden an Pflanzen, indem es pflanzliche Abwehrmechanismen auslöst. Um die Auswirkungen der Chitosan-Applikation und des Wasserstresses auf Wachstum, Ertrag und sekundäre Metaboliten von Origanum zu untersuchen, wurde eine Gewächshausstudie in einem faktoriellen Experiment auf der Grundlage eines randomisierten vollständigen Blockdesigns (RCBD) mit drei Replikationen durchgeführt. Die untersuchten Faktoren bestanden aus einer Blattapplikation von Chitosan in drei Konzentrationen (0, 250 und 500 mg/L), unter gut bewässerten und Wasserdefizit-Bedingungen bei zwei Origanum-Arten (Origanum majorana und Origanum vulgare). Der Wasserstress und die Blattbehandlung mit Chitosan (drei Schritte) wurden drei Wochen vor der Blüte durchgeführt. Die Ergebnisse zeigten, dass der Wasserstress das Trockengewicht der Pflanze reduzierte, während der Gesamtgehalt an Phenol und ätherischen Ölen stieg. Die Blattapplikation von 500 mg/L Chitosan unter Wasserdefizit-Bedingungen erhöhte jedoch das Trockengewicht der Triebe und den Phenolgehalt. Die Anwendung von Chitosan in einer Konzentration von 250 mg/L erhöhte den Gehalt an ätherischem Öl im Vergleich zur Kontrolle. Die Ergebnisse zeigten auch, dass die Anwendung von Chitosan als Bio-Elicitor die nachteiligen Auswirkungen von Wasserstress auf die Majoranpflanze reduzieren kann. Die Analyse der GC/MS-Apparatur ergab, dass 33 Verbindungen im ätherischen Öl identifiziert wurden, wobei γ‑Terpinen, cis-Sabinenhydrat und Terpinolen im Öl beider Origanum-Arten dominierten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abu-Muriefah S (2013) Effect of chitosan on common bean (Phaseolus vulgaris L.) plants grown under water stress conditions. Int Res J Agric Sci Soil Sci 3:192–199

    Google Scholar 

  • Adams RP (2007) Identification of essential oil components by gascromatography/quadrupole mass spectroscopy, 4th edn. Allured Publishing, Carol Stream, p 455

    Google Scholar 

  • Aimar D, Calafat M, Andrade AM, Carassay L, Abdala GI, Molas ML (2011) Drought tolerance and stress hormones: From model organisms to forage crops. Plant Environ 137–164

  • Anderson OM, Jordheim M (2005) The anthocyanins. In: Anderson OM, Markham KR (eds) Flavonoids, chemistry, biochemistry and applications. CRC Press, London, pp 471–553

    Google Scholar 

  • Aslani Z, Hasani A, Rasouli Sadghiani MH, Sefidkon F, Barin M (2011) Effect of two species of arbuscular mycorrhiza on growth, chlorophyll content and phosphorus uptake in basil under drought stress conditions. J Res Iran Med Aromat Plants 27(3):471–486

    Google Scholar 

  • Azhar N, Hussain B, Ashraf MY, Abbasi KY (2011) Water stress mediated changes in growth, physiology and secondary metabolites of desi ajwain (Trachyspermum ammi L.). Pak J Bot 43(1):15–19

    CAS  Google Scholar 

  • Azizi A, Yan F, Honermeier B (2009) Herbage yield: essential oil content and composition of three oregano (Origanum vulgare L.) populations as affected by soil moisture regimes and nitrogen supply. Ind Crops Prod 29:554–561

    CAS  Google Scholar 

  • Bautista-Baños S, Hernandez-Lauzardo AN, Velázquez-del Valle MG (2006) Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot 25:108–118

    Google Scholar 

  • Bettaieb I, Zakhama N, Aidi Wanes W, Kchouk ME, Marzouk B (2009) Water efficit effects on salvia officinalis faty acida and essential oil composition. Sci Hortic 120:271–275

    CAS  Google Scholar 

  • Boonlertnirun S, Sarobol ED, Meechoui S, Sooksathan I (2007) Drought recovery and grain yield potential of rice after chitosan application. Kasetsart 41:1–6

    CAS  Google Scholar 

  • Breusegem FV, James F, Dat D, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:423–431

    Google Scholar 

  • Chao D, Xin Meng X, Meng J, Khan IH, Dai L, Khan A, Xingye AN, Zhang J, Huq T, Ni Y (2019) Chitosan as a preservative for fruits and vegetables: a review on chemistry and antimicrobial properties. J Bioresour Bioprod 4:11–21

    Google Scholar 

  • Cheng X, Zhou U, Cui X (2006) Improvement of phenylethanoid glycosides biosynthesis in Cistanche deserticola cell suspension cultures by chitosan elicitor. J Biotechnol 121:253–260

    CAS  PubMed  Google Scholar 

  • Davies NW (1990) Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases. J Chromatogr 503:1–24

    CAS  Google Scholar 

  • Dehghani MS, Naeemi M, Gholamali Alamdari E, Jabari H (2019) Effects of chitosan foliar application on quantitative and qualitative characteristics of German chamomile (Matricaria chamomilla L.) under water deficit stress conditions

    Google Scholar 

  • Dunford NT, Vazquez RS (2005) Effect of water stress on plant growth and thymol and carvacrol concentrations in Mexican oregano grown under controlled conditions. J Appl Hortic 7(1):20–22

    Google Scholar 

  • Emami Bistgani Z, Siadat SA, Bakhshandeh A, Ghasemi Pirbaloti A (2015) Effects of chemical and organic fertilizers and chitosan on physiological traits and phenolic compound amounts in thyme (Thymus deanensis Celak) in Shahrekord region. J Crop Prod Res 7(1):11–27

    Google Scholar 

  • Emami Bistgani Z, Siadat SA, Bakhshandeh A, Ghasemi Pirbalouti A, Hashemi M (2017) Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop J 5:407–415

    Google Scholar 

  • Ghanidehkordy F, Ghasemi pearbalouty G, Hamedi B, Malekpoor F (2011) Effects of water and nitrogen on morphological and physiological traits of his chamomile (Matricaria aurea L.). J Herb Drugs 2(2):101–111

    Google Scholar 

  • Hadwiger LA (2013) Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci 208:42–49

    CAS  PubMed  Google Scholar 

  • Harish Prashanth KV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential—An overview. Trends Food Sci Technol 18(3):117–131

    Google Scholar 

  • Heng Y, Xavier C, Lars F, Christensen P, Kai G (2012) Chitosan oligosaccharides promote the content of polyphenols in Greek Oregano (Origanum vulgare hirtum ssp.). J Agric Food Chem 60:136–143

    Google Scholar 

  • Hussaini Begum M, Taheri GH, Vaezi Kakhaki MR, Tlaty M (2013) Foliar application of chitosan on growth and morphological characteristics of marigold (Calendula officinalis). NationalConference of passive defense in the agricultural sector, 30.11.2013

    Google Scholar 

  • Javanmardi J, Khalighi A, Kashi A, Bais HP, Vivanco JM (2002) Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J Agric Food Chem 50:5878–5883

    CAS  PubMed  Google Scholar 

  • Kim KW, Thomas RL (2007) Antioxidative activity of chitosans with varying molecular weights. J Food Chem 101:308–313

    CAS  Google Scholar 

  • Kintzios SE (2004) Oregano (The genera origanum and Lippa). Taylor & Francis, Abingdon, p 267

    Google Scholar 

  • Kovacik J, Backor M, Strnad M, Repcak M (2009) Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Report 28:135–143

    CAS  Google Scholar 

  • Kowalski B, Jimenez F, Herrera L, Agramonet Penalver D (2006) Application of soluble chitosan in vitro and in the greenhouse to increase yield and seed quality of potato minitubers. Potato Res 49(3):167–176

    CAS  Google Scholar 

  • Lee YS, Kim YH, Kim SB (2005) Changes in the respiration, growth, and vitamin C content of soybean sprouts in response to chitosan of different molecular weights. Hortic Sci 40:1333–1335

    CAS  Google Scholar 

  • Lisar SY, Rahman IM, Hossain MM, Motafakkerazad R (2012) Water stress in plants. Causes, effects and responses. In Ismail MM Rahman, Hasegawa H (Eds) Water Stress. InTech: Rijeka, pp 1–14

    Google Scholar 

  • Liu J, Tian S, Meng X, Xu Y (2007) Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. J Postharvest Biol Technol 44:300–306

    CAS  Google Scholar 

  • Lukas B, Schmiderer C, Novak J (2015) Essential oil diversity of european Origanum vulgare L. (Lamiaceae). Phytochemistry 119:32–40

    CAS  PubMed  Google Scholar 

  • Mahdavi B, Rahimi A (2013) Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. Eurasian J Biosci 7:69–76

    Google Scholar 

  • Mahdavi B, Modarres Sanavy SAM, Aghaalikhani M, Sharifi M (2012) Effect of water stress and chitosan on germination and proline of seedling in safflower (Carthamus tinctorius L.). Crop Improv 25:728–741

    Google Scholar 

  • McDonald S, Prenzler PD, Autolovich M, Robard S (2001) Phenolic content and antioxidant activity of olive extracts. Food Chem Toxicol 73:73–84

    CAS  Google Scholar 

  • Meek CR, Bidlack JE (2005) Arthropod population, phenylalaninamonia-lyase activity and fresh weight of Sweet Basil (Ocimum basilicum L.) as affected by plant age and Bacillus thuringiensis treatment. Plant Sci 85:9–17

    Google Scholar 

  • Mehregan M, Mehrafarin A, Labbafi MR, Naghdi Badi H (2017) Effect of different concentrations of chitosan biostimulant on biochemical and morphophysiological traits of Stevia plant (Stevia rebaudiana Bertoni). J Med Plants 16(62):169–181

    Google Scholar 

  • Mondal MA, Malek MA, Puteh AB, Ismail MR, Ashrafuzzaman M, Naher L (2012) Effect of foliar application of chitosan on growth and yield in okra. Aust J Crop Sci 6(5):918–921

    CAS  Google Scholar 

  • Naderi S, Fakheri BA, Esmaeilzadeh Bahabadi S, Kamaladini H (2012) Increasing of phenyl alanine ammonia lyase (PAL) gene expression and phenylpropanoid compounds of basil (Ocimum basilicum) by chitosan. Mod Genet J 9(3):259–266

    Google Scholar 

  • Naeimi T, Fahmideh L, Ali Fakheri B (2018) The impact of drought stress on antioxidant enzymes activities, containing of proline and carbohydrate in some genotypes of durum wheat at seedling stage. J Crop Breed 10(26):22–31

    Google Scholar 

  • No HK, Young PN, Ho LS, Meyers SP (2002) Antibacterial activity of Chitosans and chitosan oligomers with different molecular weights. Int Food Microbiol 74:65–72

    CAS  Google Scholar 

  • Padulosi S (1997) Oregano. International Plant Genetic Resources Institute, Rome, p viii

    Google Scholar 

  • Sakihama Y, Cohen MF, Grace SC, Yamasaki H (2002) Plant phenolic antioxidant and prooxidant activities, phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177(1):67–80

    CAS  PubMed  Google Scholar 

  • Salehi K, Solouki M, Tanha M (2016) Study the effects of plant growth promoting bacteria and salicylic acid in green mint (Mentha spicata L.) under drought stress conditions. Mod Genet J 12(2):241–252

    Google Scholar 

  • Sangtarash MH, Qaderi MM, Chinnappa CC, Reid DM (2009) Carotenoid differential sensitivity of canola (Brassica napus) seedlings to ultraviolet‑B radiation, water stress and abscisic acid. Environ Exp Bot 66:212–219

    CAS  Google Scholar 

  • Shibuya N, Minami E (2001) Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol 59:223–233

    CAS  Google Scholar 

  • Skoula M, Harborne JB (2002) The taxonomy and chemistry of Origanum. Oregano: the genera Origanum and Lippia, p 67

    Google Scholar 

  • Taheri F, Dahmardeh M, Salari M, Bagheri R (2017) Evaluate the effect of chitosan on the activities of antioxidant enzymes in Ajwain (Carum copticum L.) under drought stress. Iran J Hortic Sci 48(3):575–584

    Google Scholar 

  • Valentovic P, Luxova M, Kolarovic L, Gasparikova O (2006) Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil Environ 52(4):184

    Google Scholar 

  • Verma N, Shukla S (2015) Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Aromat Plants 2(4):105–113

    Google Scholar 

  • Vranova E, Inze D, Breusegem VF (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    CAS  PubMed  Google Scholar 

  • Wajahatullah KH, Balakrishnan P, Donald S (2003) Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. J Plant Physiol 160:859–863

    Google Scholar 

  • Wanichpongpan P, Suriyachan K, Chandrkrachang S (2001) Effects of chitosan on the growth of gerbera flower plant (Gerbera jamesonii). In Uragami T, Kurtia K, Fukamizo T (eds) Chitin and chitosan in life science. Kodansha Scientific Ltd., Tokyo, pp 198–201

  • Xu J, Jin J, Zhao H et al (2019) Drought stress tolerance analysis of Populus ussuriensis clones with different ploidies. J Forensics Res 30:1267–1275

    Google Scholar 

  • Yen MT, Yang JH, Mau JL (2008) Antioxidant properties of chitosan from crab shells. Carbohydrat Polym 74:840–844

    CAS  Google Scholar 

  • Yin H, Fretté XC, Christensen LP, Grevsen K (2012) Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum). J Agric Food Chem 60:136–143

    CAS  PubMed  Google Scholar 

  • Zhang Y, Mian MR, Bouton JH (2006) Recent molecular and genomic studies on stress tolerance of forage and turf grasses. Crop Sci 46:497–511

    Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Deputy of Research and Technology of Azarbaijan Shahid Madani University (99/D/897), Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamid Mohammadi or Mansour Ghorbanpour.

Ethics declarations

Conflict of interest

H. Mohammadi, L. Aghaee Dizaj, A. Aghaee and M. Ghorbanpour declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, H., Aghaee Dizaj, L., Aghaee, A. et al. Chitosan-Mediated Changes in dry Matter, Total Phenol Content and Essential Oil Constituents of two Origanum Species under Water Deficit Stress. Gesunde Pflanzen 73, 181–191 (2021). https://doi.org/10.1007/s10343-020-00536-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-020-00536-0

Keywords

Schlüsselwörter

Navigation