Skip to main content
Log in

Exact Solutions of Generalized Riemann Problem for Nonhomogeneous Shallow Water Equations

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider quasilinear hyperbolic system of balance laws describing one-dimensional nonhomogeneous shallow water equations with generalized Riemann initial data. We obtain exact solutions to the shallow water equations with friction by using differential constraint method. A special case of the obtained solution provides well known rarefaction wave to the homogeneous case of the governing equations. We construct a convenient example for the generalized Riemann problem and study the behavior of the solution profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Janenko, Compatibility theory and methods of integration of systems of nonlinear partial differential equations, Proc. 4th all-union Math. Cong., (Leningrad, Nauka), 44(33) (1964), 247–52.

    Google Scholar 

  2. A. F. Sidrov, V. P. Shapeev, and N. N. Janenko, The method of differential constraint methods and its application in gas dynamics, Nauka, Novosibirsk 1984.

    Google Scholar 

  3. N. Manganaro and S. Meleshko, Reduction procedure and generalized simple waves for systems written in Riemann variables, Nonlinear Dynamics, 30 (2002), 87–102.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Kuila and T. Raja Sekhar, Riemann solution for ideal isentropic magnetogasdy namics, Meccanica, 49 (2014), 2453–2465.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Kuila, T. Raja Sekhar, and D. Zeidan A Robust and accurate Riemann solver for a compressible two-phase flow model, Appl. Math. Comput., 265 (2015), 681–695.

    MathSciNet  MATH  Google Scholar 

  6. T. Raja Sekhar and Minhajul, Elementary wave interactions in blood flow through artery, J. Math. Phys., 58(10) (2017), 101502.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Radha and V. D. Sharma, Interaction of a weak discontinuity with elementary waves of Riemann problem, J. Math. Phys., 53(1) (2012), 013506.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Ambika and R. Radha, Riemann problem in non-ideal gas dynamics, Indian J. Pure Appl. Math., 47(3) (2016), 501–521.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Kuila and T. Raja Sekhar, Riemann solution for one dimensional non-ideal isentropic magnetogasdynamics, Comput. Appl. Math., 35(1) (2016), 119–133.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, New York 1994.

    Book  MATH  Google Scholar 

  11. D. Fusco and N. Manganaro, A method for finding exact solutions to hyperbolic systems of first-order pdes, IMA J. App. Math., 57(3) (1996), 223–242.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Zhang, S. Feng, Z. Lu, and Y. Liu, Application of differential constraint method to exact solution of second-grade fluid, Applied Mathematics and Mechanics, 30(4) (2009), 403–412.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Majid, Several new exact solutions for a fast diffusion equation by the differential constraints of the linear determining equations, Applied Mathematics and Computation, 45(2–3) (2003), 525–540.

    MathSciNet  MATH  Google Scholar 

  14. C. Curro and N. Manganaro, Generalized Riemann problems and exact solutions for p-systems with relaxation, Ricerche di Mathematica, 65(2) (2016), 549–562.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. V. Oleg and I. V. Verevkin, Differential constraints and exact solutions of nonlinear diffusion equations, J. Phys. A: Math. Gen., 36 (2003), 1401–1414.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. P. Edwards and P. Broadbridge, Exact transient solutions to nonlinear diffusion-convection equations in higher dimensions, J. Phys. A: Math. Gen., 27 (1994), 5455–5465.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Curro, D. Fusco, and N. Manganaro, Differential constraints and exact solution to Riemann problems for a traffic flow model, Acta Appl. Math., 122(1) (2012), 167–178.

    MathSciNet  MATH  Google Scholar 

  18. C. Curro and N. Manganaro, Riemann problems and exact solutions to a traffic flow model, J. Math. Phy., 54(7) (2013), 071503.

    Article  MathSciNet  MATH  Google Scholar 

  19. K. V. Karelsky and A. S. Petrosyan, Particular solutions and Riemann problem for modified shallow water equations, Fluid Dynamics Research, 38 (2006), 339–358.

    Article  MathSciNet  MATH  Google Scholar 

  20. X. Fu and V. D. Sharma, Cauchy problem for quasilinear hyperbolic systems of shallow water equations, Appl. Anal., 92(11) (2012), 2309–2319.

    Article  MathSciNet  MATH  Google Scholar 

  21. Ch. Radha, V. D. Sharma, and A. Jeffrey, An approximate analytical method for describing the kinematics of a bore over a sloping beach, Appl. Anal., 81(4) (2002), 867–892.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Faccanoni and A. Mangeney, Exact solution for granular flows, Int. J. Numer. Anal. Meth. Geomech., 37(10), (2012), 1408–1433.

    Article  Google Scholar 

  23. Th. Katsaounis, A generalized relaxation method for transport and diffusion of pollutant models in shallow water, Computational Methods in Applied Mathematics, 4(4) (2004), 410–430.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Zhou, G. Chen, S. Noelle, and H. Guo, A well-balanced stable generalized Riemann problem scheme for shallow water equations using adaptive moving unstructured triangular meshes, Int. J. Numer. Meth. Fluids, 73 (2013), 266–283.

    Article  MathSciNet  Google Scholar 

  25. L. Plantie, Generalized Riemann problems for the shallow water system with a constraint on the height of flow, Q. J1 Mech. Appl. Math., 67(2) (2014), 253–286.

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Saint Venant, Theory of the non-permanent movement of water with application to river floods and the introduction of ponds in their bed, C. R. Acad. Sci. Paris ser. I, 173 (1871), 147–154, 237–240.

    MATH  Google Scholar 

  27. J. B. Keller, Shallow-water theory for arbitrary slopes of the bottom, J. Fluid Mech., 489 (2003), 345–348.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Mangeney, P. Heinrich, and R. Roche, Analytical solution for testing debris avalanche numerical models, Pure and Applied Geophysics, 157(6–8) (2000), 1081–1096.

    Article  Google Scholar 

  29. S. B. Savage and K. Hutter, The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199(1) (1989), 177–215.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

Authors would like to thank the reviewers for their valuable comments and suggestions to improve the quality of the manuscript. The first author would like to thank Professor Natale Manganaro and Professor carmela curro from Department of Mathematics, Universit Degli Studi Di Messina, Messina for their valuable suggestions. First author is highly thankful to Ministry of Human Resource Development, Government of India, for the institute fellowship (grant no. IIT/ACAD/PGS & R/F.II/2/14MA92R02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Raja Sekhar or G. P. Raja Sekhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.M., Raja Sekhar, T. & Raja Sekhar, G.P. Exact Solutions of Generalized Riemann Problem for Nonhomogeneous Shallow Water Equations. Indian J Pure Appl Math 51, 1225–1237 (2020). https://doi.org/10.1007/s13226-020-0460-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-020-0460-2

Key words

2010 Mathematics Subject Classification

Navigation