Skip to main content
Log in

Quantum-Chemical Modeling of Interaction between the Most Stable Methylamine-Pyridoxal-5'-Phosphate Tautomers and Water: Structure and Properties of Monohydrates and Dihydrates

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Quantum chemical caculations of the most stable conformers of methylamine-pyridoxal-5-phosphate Schiff base three tautomeric (enol, keto, and zwitterionic) structures and their monohydrates and dihydrates have been carried out at the B3LYP/6-31+G**, M062X/6-31+G**, and BVP86/TZVP levels of theory. The optimized structures, harmonic force fields, and vibrational frequencies of tautomers have been obtained. The influence of macrohydration on the conformational composition of tautomers have been studied using the polarized continuum model. Vertical ionization potentials of the most stable monohydrates and dihydrates of methylamine-pyridoxal-5'-phosphate tautomers have been calculated. The influence of macrohydration and microhydration on the structure, spectra, and vertical ionization energies of the monohydrates and dihydrates of methylamine-pyridoxal-5-phosphate tautomers have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. D. E. Metzler, M. Ikawa, and E. E. Snell, J. Am. Chem. Soc. 76, 648 (1954).

    Article  CAS  Google Scholar 

  2. D. E. Metzler and E. E. Snell, J. Am. Chem. Soc. 74, 979 (1952).

    Article  CAS  Google Scholar 

  3. D. E. Metzler, J. B. Longenecker, and E. E. Snell, J. Am. Chem. Soc. 75, 2786 (1953).

    Article  CAS  Google Scholar 

  4. D. E. Metzler, J. Olivard, and E. E. Snell, J. Am. Chem. Soc. 76, 644 (1954).

    Article  CAS  Google Scholar 

  5. F. Bartl, H. Urjasz, and B. Brzezinski, J. Mol. Struct. 441, 77 (1998).

    Article  CAS  Google Scholar 

  6. J. M. Sanchez-Ruiz and M. Martinez-Carrion, Biochemistry 25, 2915 (1986).

    Article  CAS  Google Scholar 

  7. R. A. John, Biochem. Biophys. Acta 1248, 81 (1995).

    Google Scholar 

  8. R. Krämer, G. Zundel, B. Brzezinski, and J. Olejnik, J. Chem. Soc., Faraday Trans. 88, 1659 (1992).

    Article  Google Scholar 

  9. G. S. M. Kiruba and M. W. Wong, J. Chem. Soc., Faraday Trans. 68, 2874 (2003).

    CAS  Google Scholar 

  10. G. M. Kuramshina and H. Takahashi, J. Mol. Struct. 735–736, 39 (2005).

    Article  Google Scholar 

  11. S. Sharif, G. S. Denisov, M. D. Toney, and H. H. Limbach, J. Am. Chem. Soc. 129, 6313 (2007).

    Article  CAS  Google Scholar 

  12. M. Chan-Huot, C. Niether, S. Sharif, et al., J. Mol. Struct. 976, 282 (2010).

    Article  CAS  Google Scholar 

  13. J. M. Sanchez-Ruiz, J. Llor, and M. Cortijo, J. Chem. Soc., Perkin Trans. 2, No. 12, 2047 (1984).

  14. J. Llor and S. B. Asensio, J. Solution Chem. 24, 1293 (1995).

    Article  CAS  Google Scholar 

  15. D. E. Metzler and E. E. Snell, J. Am. Chem. Soc. 77, 2431 (1955).

    Article  CAS  Google Scholar 

  16. K. Nakamoto and A. E. Martell, J. Am. Chem. Soc. 81, 5857 (1959).

    Article  CAS  Google Scholar 

  17. K. Nakamoto and A. E. Martell, J. Am. Chem. Soc. 81, 5863 (1959).

    Article  CAS  Google Scholar 

  18. Y. Matsushima and A. E. Martell, J. Am. Chem. Soc. 89, 1331 (1967).

    Article  CAS  Google Scholar 

  19. D. Heinert and A. E. Martell, J. Am. Chem. Soc. 85, 1334 (1963).

    Article  CAS  Google Scholar 

  20. D. Heinert and A. E. Martell, J. Am. Chem. Soc. 81, 3933 (1959).

    Article  CAS  Google Scholar 

  21. W. B. Person, J. E. Del Bene, W. Szajda, et al., J. Phys. Chem. 95, 2770 (1991).

    Article  CAS  Google Scholar 

  22. F. Buyl, J. Smets, G. Maes, and L. Adamowicz, J. Phys. Chem. 99, 14967 (1995).

    Article  CAS  Google Scholar 

  23. F. J. Anderson and A. E. Martell, J. Am. Chem. Soc. 86, 715 (1964).

    Article  CAS  Google Scholar 

  24. A. Kwiatek and Z. Mielke, Spectrochim. Acta, A 135, 1099 (2015).

    Article  CAS  Google Scholar 

  25. V. Barone and M. Cossi, J. Phys. Chem. A 102, 1995 (1998).

    Article  CAS  Google Scholar 

  26. M. Cossi, N. Rega, G. Scalmani, et al., J. Comput. Chem. 24, 669 (2003).

    Article  CAS  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford CT, 2004).

  28. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford CT, 2013).

    Google Scholar 

  29. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  30. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  31. V. A. Rassolov, M. A. Ratner, J. A. Pople, et al., J. Comput. Chem. 22, 976 (2001).

    Article  CAS  Google Scholar 

  32. F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, UK, 1999), p. 446.

    Google Scholar 

  33. Y. Yang, M. N. Weaver, K. M. Weaver, et al., J. Phys. Chem. A 113, 9843 (2009).

    Article  CAS  Google Scholar 

  34. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

    Article  CAS  Google Scholar 

  35. A. Schaefer, Y. Horn, and R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992).

    Article  CAS  Google Scholar 

  36. A. Schaefer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994).

    Article  CAS  Google Scholar 

  37. D. Kosenkov, Y. A. Kholod, L. Gorb, et al., J. Phys. Chem. A 113, 9386 (2009).

    Article  CAS  Google Scholar 

  38. www.chemcraftprog.com. Version 1.8 (build 486).

  39. I. V. Kochikov and G. M. Kuramshina, Vestn. Mosk. Univ., Ser. Khim. 26, 354 (1985).

    CAS  Google Scholar 

  40. I. V. Kochikov, G. M. Kuramshina, Yu. A. Pentin, et al., Zh. Fiz. Khim. 64, 3393 (1990).

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research, project no. 18-03-00412а.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Kuramshina.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorosheva, E.I., Sharapova, S.A. & Kuramshina, G.M. Quantum-Chemical Modeling of Interaction between the Most Stable Methylamine-Pyridoxal-5'-Phosphate Tautomers and Water: Structure and Properties of Monohydrates and Dihydrates. Russ. J. Phys. Chem. 94, 2244–2249 (2020). https://doi.org/10.1134/S003602442011014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442011014X

Keywords:

Navigation