Skip to main content
Log in

Macroscopic Dynamics of the Strong-Coupling BCS-Hubbard Model

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The aim of the current paper is to illustrate, in a simple example, our recent, very general, rigorous results [1, 2] on the dynamical properties of fermions and quantum-spin systems with long-range, or mean-field, interactions, in infinite volume. We consider here the strong-coupling BCS-Hubbard model studied in [3, 4], because this example is very pedagogical and, at the same time, physically relevant for it highlights the impact of the (screened) Coulomb repulsion on (\(s\)-wave) superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The positivity of \({{\gamma }_{{k,q}}}\) imposes constraints on the choice of the function \(f\).

  2. In the weak \(^{ * }\) topology.

  3. In the weak \(^{ * }\) topology.

  4. More precisely, it converges to the barycenter of a Choquet measure.

  5. This implies that any solution \(\left| d \right|\) to the variational problem (8) must have the same absolute value.

  6. For instance, \(\left( {1,0,0,0} \right)\) is the vacuum; \(\left( {0,1,0,0} \right)\) and \(\left( {0,0,1,0} \right)\) correspond to one fermion with spin \( \uparrow \) and \( \downarrow \), respectively; \(\left( {0,0,0,1} \right)\) refers to two fermions with opposite spins.

  7. The product state \({{\rho }^{{(L)}}}\) is (well-) defined by \({{\rho }^{{(L)}}}({{\alpha }_{{{{x}_{1}}}}}({{A}_{1}}) \cdots {{\alpha }_{{{{x}_{n}}}}}({{A}_{n}}))\) = \(\rho ({{A}_{1}}) \cdots \rho ({{A}_{n}})\) for all \({{A}_{1}}, \ldots ,{{A}_{n}} \in B\left( {{{F}_{{\{ 0\} }}}} \right)\) and all \({{x}_{1}}, \ldots ,{{x}_{n}} \in {{\Lambda }_{L}}\) such that \({{x}_{i}} \ne {{x}_{j}}\) for \(i \ne j\), where \({{\alpha }_{{{{x}_{j}}}}}({{A}_{j}}) \in B\left( {{{F}_{{\{ {{x}_{j}}\} }}}} \right)\) is the \({{x}_{j}}\)-translated copy of \({{A}_{j}}\) for all \(j \in \{ 1, \ldots ,n\} \).

  8. Even states are the physically relevant ones. Even means that the expectation value of any odd monomials in \({{\left\{ {a_{{0,s}}^{ * },{{a}_{{0,s}}}} \right\}}_{{s \in \{ \uparrow , \downarrow \} }}}\) with respect to the on-site state \(\rho \) is zero.

REFERENCES

  1. J.-B. Bru and W. de Siqueira Pedra, “Classical dynamics generated by long-range interactions for lattice fermions and quantum spins”, https://web.ma.utexas.edu/mp_arc/c/19/19-37.pdf (2019).

  2. J.-B. Bru and W. de Siqueira Pedra, “Quantum dynamics generated by long-range interactions for lattice-fermion and quantum spins”, https://web.ma.utexas.edu/mp_arc/c/19/19-38.pdf (2019).

  3. J.-B. Bru and W. de Siqueira Pedra, Math. Phys. 22, 233–303 (2010).

    Google Scholar 

  4. J.-B. Bru and W. de Siqueira Pedra, “Macroscopic long-range dynamics of fermions and quantum spins on the lattice — an introduction,” https://web.ma.utexas.edu/mp_arc/c/19/19-39.pdf (2019).

  5. W. Metzner, C. Castellani, and C. Di Castro, Adv. Phys. 47, 317–445 (1998).

    Article  ADS  Google Scholar 

  6. D. J. Thouless, The Quantum Mechanics of Many-Body Systems (Academic Press, New York, 1972), 2nd ed.

    MATH  Google Scholar 

  7. N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A New Method in the Theory of Superconductivity (Chapman & Hall, London, 1959).

    Google Scholar 

  8. N. N. Bogoliubov, Jr., J. G. Brankov, V. A. Zagrebnov, A. M. Kurbatov, and N. S. Tonchev, The Approximating Hamiltonian Method in Statistical Physics (Izd. Bulg. Akad. Nauk, Sofia, 1981) [in Bulgarian].

    MATH  Google Scholar 

  9. N. N. Bogoliubov, Jr., J. G. Brankov, V. A. Zagrebnov, A. M. Kurbatov, and N. S. Tonchev, Russ. Math. Surv. 39, 1–50 (1984).

    Google Scholar 

  10. J. G. Brankov, D. M. Danchev, and N. S. Tonchev, Theory of Critical Phenomena in Finite-Size Systems: Scaling and Quantum Effects (Word Scientific, Singapore, 2000).

    Book  Google Scholar 

  11. W. Thirring and A. Wehrl, Commun. Math. Phys. 4, 303–314 (1967).

    Article  ADS  Google Scholar 

  12. W. Thirring, Commun. Math. Phys. 7, 181–189 (1968).

    Article  ADS  Google Scholar 

  13. L. Hemmen, Fortschr. Phys. 26, 397–439 (1978).

    Article  MathSciNet  Google Scholar 

  14. P. Bóna, Acta Phys. Slov. 25, 3–21 (1975).

    Google Scholar 

  15. G. L. Sewell, Lett. Math. Phys. 6, 209–213 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. J. Rieckers, Math. Phys. 25, 2593–2601 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Morchio and F. J. Strocchi, Math. Phys. 28, 622–635 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  18. P. Bóna, Czech. J. Phys. B 37, 482–491 (1987).

    Article  ADS  Google Scholar 

  19. E. Duffner and A. Z. Rieckers, Naturforschung 43a, 521–532 (1988).

    Article  ADS  Google Scholar 

  20. P. J. Bóna, Math. Phys. 29, 2223–2235 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  21. P. J. Bóna, Math. Phys. 30, 2994–3007 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Bona, “On symmetries in mean-field theories,” in Selected Topics in Quantum Field Theory and Mathematical Physics, Ed. by J. Niederle and J. Fischer (World Scientic, Singapore, 1990).

    Google Scholar 

  23. T. J. Unnerstall, Math. Phys. 31, 680–688 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  24. T. Unnerstall, Commun. Math. Phys. 130, 237–255 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  25. T. Unnerstall, Lett. Math. Phys. 20, 183–187 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  26. P. Bóna, “Quantum mechanics with mean-field backgrounds,” Preprint No. Ph10-91 (Comenius University, Bratislava, 1991).

    Google Scholar 

  27. N. G. Duffield, Helv. Phys. Acta 64, 610–632 (1991).

    MathSciNet  Google Scholar 

  28. F. Bagarello and G. J. Morchio, Stat. Phys. 66, 849–866 (1992).

    Article  ADS  Google Scholar 

  29. N. G. Duffield and R. F. Werner, Helv. Phys. Acta 65, 1016–1054 (1992).

    MathSciNet  Google Scholar 

  30. N. G. Duffield and R. F. Werner, Rev. Math. Phys. 4, 383–424 (1992).

    Article  MathSciNet  Google Scholar 

  31. N. G. Duffield, H. Roos, and R. F. Werner, Ann. Inst. H. Poincaré Phys. Theor. 56, 143–186 (1992).

    Google Scholar 

  32. N. G. Duffield and R. F. Werner, Rev. Math. Phys. 4, 383–424 (1992).

    Article  MathSciNet  Google Scholar 

  33. N. G. Duffield and R. F. Werner, in Stochastics and Quantum Mechanics (Swansea, 1990), Ed. by A. Truman and I. M. Davies (World Scientific, River Edge, NJ, 1992), pp. 115–129.

    Google Scholar 

  34. J.-B. Bru and W. de Siqueira Pedra, “Classical dynamics from self-consistency equations in quantum mechanics,” (2018). https://web.ma.utexas.edu/ mp_arc/c/18/18-111.pdf.

Download references

Funding

This work is supported by CNPq (308337/2017-4), FAPESP (2017/22340-9), as well as by the Basque Government through the grant IT641-13 and the BERC 2018-2021 program, and by the Spanish Ministry of Science, Innovation and Universities: BCAM Severo Ochoa accreditation SEV-2017-0718, MTM2017-82160-C2-2-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Bernard Bru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bru, JB., de Siqueira Pedra, W. Macroscopic Dynamics of the Strong-Coupling BCS-Hubbard Model. Phys. Part. Nuclei 51, 802–806 (2020). https://doi.org/10.1134/S106377962004019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377962004019X

Navigation