Skip to main content
Log in

Conventional Quantum Statistics with a Probability Distribution Describing Quantum System States

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The review of a new probability representation of quantum states is presented, where the states are described by conventional probability distribution functions. The invertible map of the probability distribution onto density operators in the Hilbert space is found using the introduced operators called a quantizer–dequantizer, which specify the invertible map of operators of quantum observables onto functions and a product of the operators onto an associative product (star product) of the functions. Examples of a quantum oscillator and a spin-1/2 particle are considered. The kinetic equations for probabilities, specifying the evolution of the states of a quantum system, which are equivalent to Schrödinger and von Neumann equations, are derived explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This work is based on the conference paper presented by V.I. Man’ko at the International Bogolyubov Conference on Problems of Theoretical and Mathematical Physics. The authors dedicate this work to the memory of Academician N.N. Bogolyubov, who was the Chair of the Theory Physics Department at MSU, and from which they graduated.

REFERENCES

  1. N. N. Bogolyubov and D. V. Shirkov, Quantum Fields (Benjamin-Cummings, 1982).

    MATH  Google Scholar 

  2. E. Schrödinger, “Der stetige Übergang von der Mikro-zur Makromechanik,” Naturwissenchaften 14, 664–666 (1926). https://doi.org/10.1007/BF01507634

    Article  ADS  MATH  Google Scholar 

  3. L. Landau, “Das Dämpfungsproblem in der Wellenmechanik,” Z. Phys. 45, 430–441 (1927). https://doi.org/10.1007/BF01343064

    Article  ADS  MATH  Google Scholar 

  4. J. Neumann, “Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik,” Gött. Nach. 1927, 245–272 (1927); http://eudml.org/doc/59230.

  5. P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon Press, Oxford, UK, 1981).

    Google Scholar 

  6. A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung. Part of book series Ergebnisse der Mathematik und Ihrer Grenzgebiete, vol. 2 (Springer, Berlin, 1933). https://doi.org/10.1007/978-3-642-49888-6

  7. N. N. Bogoliubov, “Microscopic solutions of the Boltzmann-Enskog equation in the kinetic theory of hard spheres,” Theor. Math. Phys. 24, 804–807 (1975). https://doi.org/10.1007/BF01029065

    Article  Google Scholar 

  8. N. N. Bogoliubov, “On the theory of superfluidity,” J. Phys. (USSR) 11, 23–32 (1947); https://www.ufn. ru/pdf/jphysussr/1947/11_1/3jphysussr19471101.pdf.

    MathSciNet  Google Scholar 

  9. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). https://doi.org/10.1103/PhysRev.40.749

    Article  ADS  MATH  Google Scholar 

  10. K. Husimi, “Some formal properties of the density matrix,” Proc. Phys. Math. Soc. Jpn. 22, 264–314 (1940). https://doi.org/10.11429/ppmsj1919.22.4_264

    Article  MATH  Google Scholar 

  11. Y. Kano, “A new phase-space distribution function in the statistical theory of the electromagnetic field,” J. Math. Phys. 6, 1913–1915 (1965). https://doi.org/10.1063/1.1704739

    Article  ADS  MathSciNet  Google Scholar 

  12. R. J. Glauber, “Photon correlations,” Phys. Rev. Lett. 10, 84–86 (1963). https://doi.org/10.1103/PhysRevLett.10.84

    Article  ADS  MathSciNet  Google Scholar 

  13. E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams,” Phys. Rev. Lett. 10, 277–279 (1963). https://doi.org/10.1103/PhysRevLett.10.277

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. D. I. Blokhintsev, “Quantum mechanics,” J. Phys. (USSR) 2, 71 (1940).

    Google Scholar 

  15. W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik,” Ztschr. Phys. 43, 172–198 (1927). https://doi.org/10.1007/BF01397280

    Article  ADS  MATH  Google Scholar 

  16. E. Schrödinger, “Zum Heisenbergschen Unschärfeprinzip,” Ber. Kgl. Akad. Wiss. Berlin 24, 296–303 (1930).

    MATH  Google Scholar 

  17. H. P. Robertson, “A general formulation of the uncertainty principle and its classical interpretation,” Phys. Rev. A 35, 667 (1930). https://doi.org/10.1103/PhysRev.34.163

    Article  Google Scholar 

  18. S. Mancini, V. I. Man’ko, and P. Tombesi, “Symplectic tomography as classical approach to quantum systems,” Phys. Lett. A 213, 1–6 (1996). https://doi.org/10.1016/0375-9601(96)00107-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. O. V. Man’ko and V. I. Man’ko, “Quantum states in probability representation and tomography,” J. Russ. Laser Res. 18, 407–444 (1997). https://doi.org/10.1007/BF02559668

    Article  Google Scholar 

  20. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993). https://doi.org/10.1103/PhysRevLett.70.1244

    Article  ADS  Google Scholar 

  21. K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Phys. Rev. A 40, 2847–2849 (1989). https://doi.org/10.1103/PhysRevA.40.2847

    Article  ADS  Google Scholar 

  22. J. Bertrand and P. Bertrand, “A tomographic approach to Wigner’s function,” Found. Phys. 17, 397–405 (1989). https://doi.org/10.1007/BF00733376

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Berichte Sächsische Akad. Wiss. Leipzig 29, 262–277 (1917).

    Google Scholar 

  24. Ya. A. Korennoy and V. I. Man’ko, “Gauge transformation of quantum states in probability representation,” J. Phys. A: Math. Theor. 50, 155302 (2017). https://doi.org/10.1088/1751-8121/aa5f64

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. W. K. Wootters, “Quantum mechanics without probability amplitudes,” Found. Phys. 16, 391–405 (1986). https://doi.org/10.1007/BF01882696

    Article  ADS  MathSciNet  Google Scholar 

  26. B. Mielnik, “Geometry of quantum states,” Commun. Math. Phys. 9, 55–80 (1968). https://doi.org/10.1007/BF01654032

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. B. O. Koopman, “On distributions admitting a sufficient statistic,” Trans. Am. Math. Soc. 39, 399–409 (1936). https://doi.org/10.1090/S0002-9947-1936-1501854-3

    Article  MathSciNet  MATH  Google Scholar 

  28. P. G. L. Porta Mana, “Quantum theory within the probability calculus: A there-you-go theorem and partially exchangeable models,” 2018; arXiv:1803.02263v2

  29. A. Khrennikov and A. A. Alodjants, “Classical (local and contextual) probability model for Bohm–Bell type experiments: No-signaling as independence of random variables,” Entropy 21, 157 (2019). https://doi.org/10.3390/e21020157

    Article  ADS  MathSciNet  Google Scholar 

  30. J. Foukzon, A. A. Potapov, E. Menkova, and S. A. Podosenov, “A new quantum mechanical formalism based on the probability representation of quantum states,” 2016; viXra:1612.0298

  31. O. V. Man’ko, V. I. Man’ko, and G. Marmo, “Alternative commutation relations, star products and tomography,” J. Phys. A: Math. Gen. 35, 699–719 (2002). https://doi.org/10.1088/0305-4470/35/3/315

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. O. V. Man’ko, V. I. Man’ko, G. Marmo, and P. Vitale, “Star products, duality and double Lie algebras,” Phys. Lett. A 360, 522–532 (2007). https://doi.org/10.1016/j.physleta.2006.08.057

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. V. N. Chernega, S. N. Belolipetskiy, O. V. Man’ko, and V. I. Man’ko, “Probability representation of quantum mechanics and star–product quantisation,” J. Phys.: Conf. Ser. 1348, 012101 (2019). https://doi.org/10.1088/1742-6596/1348/1/012101

    Article  Google Scholar 

  34. V. I. Man’ko and R. Vilela Mendes, “Non-commutative time-frequency tomography,” Phys. Lett. A 263, 53–61 (1999). https://doi.org/10.1016/S0375-9601(99)00688-X

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. P. Adam, V. A. Andreev, M. A. Man’ko, M. Mechler, and V. I. Man’ko, “Star product formalism for probability and mean value representations of qudits,” 2019; arXiv:1912.06893.

  36. V. I. Man’ko, G. Marmo, F. Ventriglia, and P. Vitale, “Metric on the space of quantum states from relative entropy. Tomographic reconstruction,” J. Phys. A: Math. Gen. 50, 335302 (2017). https://doi.org/10.1088/1751-8121/aa7d7d

    Article  MathSciNet  MATH  Google Scholar 

  37. V. N. Chernega, O. V. Man’ko, and V. I. Man’ko, “Triangle geometry of the qubit state in the probability representation expressed in terms of the triada of Malevich’s squares,” J. Russ. Laser Res. 38, 141–149 (2017). https://doi.org/10.1007/s10946-017-9628-6

    Article  Google Scholar 

  38. V. N. Chernega and O. V. Man’ko, “Qubits and two-level atom states in representation of Malevich’s squares,” EPJ Web of Conferences 220, 03006 (2019). https://doi.org/10.1051/epjconf/201922003006

  39. O. V. Man’ko and V. N. Chernega, “God plays coins, or superposition principle for quantum states in probability representation of quantum mechanics,” EPJ Web of Conferences 220, 01008 (2019). https://doi.org/10.1051/epjconf/201922001008

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Man’ko, O. V. Man’ko or V. N. Chernega.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man’ko, V.I., Man’ko, O.V. & Chernega, V.N. Conventional Quantum Statistics with a Probability Distribution Describing Quantum System States. Phys. Part. Nuclei 51, 772–780 (2020). https://doi.org/10.1134/S1063779620040486

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779620040486

Navigation