Skip to main content
Log in

Quantum Leaps in the Vicinity of One-Loop Gravity Black Holes

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Consider a non-stationary extension of black hole solutions to the quantum-extended (one-loop GR) system of Einstein–Maxwell equations with a complex scalar field. Important representatives of these solutions are non-stationary rotating black holes located inside the active galactic nuclei. Computing the local energy density of a freely falling observer one finds, upon appropriate boundary conditions, the trans-Planckian leap of the local energy density near the event horizons. Thus, one locates a “Firewall”, which, on one hand, serves as a source of fluxes of ultra-high-energy cosmic rays out of the active galactic nuclei, and, on the other hand, is originally designed to resolve the Hawking paradox in black hole physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. Bartos and M. Kowalski, Multimessenger Astronomy (IOP Publishing, Bristol, 2017).

    Book  Google Scholar 

  2. J. Abraham, et al. (Pierre Auger Collab.), “Correlation of the highest energy cosmic rays with nearby extragalactic objects,” Science 318, 938–943 (2007).

    Article  ADS  Google Scholar 

  3. B. P. Abbott, et al. (LIGO Scientific and Virgo Collab.), “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Berti, V. Cardoso, and C. M. Will, “On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA,” Phys. Rev. D: Part. Fields 73, 064030 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  5. K. Akiyama et al. (Event Horizon Telescope Collab.), “First M87 event horizon telescope results. I. The shadow of the supermassive black hole,” Astrophys. J. 875, L1 (2019).

    Article  ADS  Google Scholar 

  6. S. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys. 43, 199–220 (1975); [Erratum: Commun. Math. Phys. 46, 206 (1976).]

    Article  ADS  MathSciNet  Google Scholar 

  7. S. W. Hawking, “Black holes and thermodynamics,” Phys. Rev. D: Part. Fields 13, 191–197 (1976).

    Article  ADS  Google Scholar 

  8. W. G. Unruh, “Experimental black hole evaporation?,” Phys. Rev. Lett. 46, 1351–1353 (1981).

    Article  ADS  Google Scholar 

  9. K. Murata, S. Kinoshita, and N. Tanahashi, “Non-equilibrium condensation process in a holographic superconductor,” J. High Energy Phys., No. 7, 50 (2010).

  10. I. Y. Park, “Quantum “violation” of Dirichlet boundary condition,” Phys. Lett. B 765, 260–264 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  11. F. James and I. Y. Park, “Quantum gravitational effects on the boundary,” Theor. Math. Phys. 195, 607–627 (2018).

    Article  MathSciNet  Google Scholar 

  12. A. J. Nurmagambetov and I. Y. Park, “Quantum-induced trans-Planckian energy near horizon,” J. High Energy Phys., No. 5, 167 (2018).

  13. I. Park, “Foliation-based approach to quantum gravity and applications to astrophysics,” Universe 5, 71 (2019).

    Article  ADS  Google Scholar 

  14. A. J. Nurmagambetov and I. Y. Park, “Quantum-gravitational trans-Planckian energy of a time-dependent black hole,” Symmetry 11, 1303 (2019).

    Article  Google Scholar 

  15. D. A. Lowe and L. Thorlacius, “Pure states and black hole complementarity,” Phys. Rev. D: Part. Fields 88, 044012 (2013).

    Article  ADS  Google Scholar 

  16. V. Mukhanov and S. Winitzki, Introduction to Quantum Effects in Gravity (Cambridge University Press, Cambridge, 2007).

    Book  Google Scholar 

  17. I. Y. Park, “Quantum-corrected geometry of horizon vicinity,” Fortsch. Phys. 65, 1700038 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  18. B. Preston and E. Poisson, “A light-cone gauge for black-hole perturbation theory,” Phys. Rev. D: Part. Fields 74, 064010 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  19. B. Carter, “Global structure of the Kerr family of gravitational fields,” Phys. Rev. 174, 1559–1571 (1968).

    Article  ADS  Google Scholar 

  20. A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, “Black holes: Complementarity or firewalls?,” J. High Energy Phys., No. 2, 62 (2013).

  21. A. J. Nurmagambetov and I. Y. Park, “On firewalls in quantum-corrected general relativity,” J. Phys.: Conf. Ser. 1390, 012091 (2019).

    Google Scholar 

  22. W. G. Unruh and R. M. Wald, “Information loss,” Rep. Prog. Phys. 80, 092002 (2017).

    Article  ADS  Google Scholar 

  23. D. N. Page, “Black hole information” (1993). arXiv: hep-th/9305040.

  24. D. N. Page, “Information in black hole radiation,” Phys. Rev. Lett. 71, 3743–3746 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Nian, “Kerr black hole evaporation and page curve” (2019). arXiv:1912.13474 [hep-th].

  26. I. Y. Park, “Black hole evolution in quantum-gravitational framework” (2019). arXiv:1912.07413 [hep-th].

Download references

ACKNOWLEDGMENTS

I wish to thank the Organizers of International Bogolyubov Conference “Problems of Theoretical and Mathematical Physics” 2019. I am grateful to In-Yong Park for stimulating discussions and pleasant collaboration. This work is partially supported by Ministry of Science and Education of Ukraine under the “Science in Universities” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Nurmagambetov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurmagambetov, A.J. Quantum Leaps in the Vicinity of One-Loop Gravity Black Holes. Phys. Part. Nuclei 51, 739–743 (2020). https://doi.org/10.1134/S1063779620040553

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779620040553

Navigation