Skip to main content
Log in

Light Scalars in NMSSM and \(B \to K{\kern 1pt} *{\kern 1pt} ll\) Angular Observables

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Most of the Beyond-the-SM models predict scalar particles. Due to this, it is important to study all possible manifestations of the latter in different kind of experiments. In this talk we consider NMSSM scenarios with light (pseudo) scalars, which have masses ranging from 10 to 100 GeV. They escape the current experimental bounds since they have large singlet component. The main goal of the study is to revisit the \({{q}^{2}}\)‑dependent angular \(B \to K{\kern 1pt} *{\kern 1pt} ll\) observables, which are sensitive to scalar contributions, and estimate the magnitude of the latter in the considered scenarios. In addition, prospects of experimental study of the effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Aaij et al. (LHCb Collab.), “Test of lepton universality with \({{B}^{0}} \to {{K}^{{*0}}}{{\ell }^{ + }}{{\ell }^{ - }}\) decays,” J. High Energy Phys., No. 8, 55 (2017); arXiv:1705.05802.

  2. A. Arbey, T. Hurth, F. Mahmoudi, and S. Neshatpour, “Hadronic and new physics contributions to \(b \to s\) transitions,” Phys. Rev. D 98, 095027 (2018); arXiv: 1806.02791.

  3. U. Ellwanger, C. Hugonie, and A. M. Teixeira, “The Next-to-minimal supersymmetric standard model,” Phys. Rep. 496, 1–77 (2010); arXiv:0910.1785 [hep-ph].

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Heinemeyer and T. Stefaniak, “A Higgs boson at 96 GeV?!,” in Prospects for Charged Higgs Discovery at Colliders—CHARGED2018 (Uppsala, 2018); arXiv: 1812.05864.

  5. T. Enomoto and R. Watanabe, “Flavor constraints on the two Higgs doublet models of Z2 symmetric and aligned types,” J. High Energy Phys., No. 5, 2 (2016); arXiv:1511.05066.

  6. J. Matias, F. Mescia, M. Ramon, and J. Virto, “Complete anatomy of \({{\bar {B}}_{d}} \to {{\bar {K}}^{{*0}}}( \to K\pi ){{l}^{ + }}{{l}^{ - }}\) and its angular distribution,” J. High Energy Phys., No. 4, 104 (2012); arXiv:1202.4266 [hep-ph].

  7. C. Beskidt, W. de Boer, and D. I. Kazakov, “Can we discover a light singlet-like NMSSM Higgs boson at the LHC?,” Phys. Lett. B 782, 69–76 (2018); arXiv: 1712.02531.

  8. J. Cao, X. Guo, Y. He, P. Wu, and Y. Zhang, “Diphoton signal of the light Higgs boson in natural NMSSM,” Phys. Lett. D 95, 116001 (2017); arXiv: 1612.08522.

  9. D. Das, U. Ellwanger, and A. M. Teixeira, “NMSDECAY: A Fortran code for supersymmetric particle decays in the next-to-minimal supersymmetric standard model,” Comput. Phys. Commun. 183, 774–779 (2012); arXiv: 1106.5633 [hep-ph].

    Article  ADS  Google Scholar 

  10. P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak, and G. Weiglein, “Applying exclusion likelihoods from LHC searches to extended Higgs sectors,” Eur. Phys. J. C 75, 421 (2015); arXiv:1507.06706.

  11. P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, and G. Weiglein, “HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC,” Eur. Phys. J. C 74, 2711 (2014); arXiv: 1305.1933 [hep-ph].

    Article  ADS  Google Scholar 

  12. A. Arbey, F. Mahmoudi, and G. Robbins, “SuperIso Relic v4: A program for calculating dark matter and flavour physics observables in supersymmetry,” Comput. Phys. Commun. 239, 238–264 (2019), arXiv: 1806.11489.

  13. D. M. Straub, flavio: A Python Package for Flavour and Precision Phenomenology in the Standard Model and Beyond (2018). arXiv:1810.08132.

  14. J. Aebischer, W. Altmannshofer, D. Guadagnoli, M. Reboud, P. Stangl, and D. M. Straub, “B-decay discrepancies after Moriond 2019,” Eur. Phys. J. C 80, 252 (2020); arXiv:1903.10434.

  15. M. Aaboud et al. (ATLAS Collab.), “Measurement of the Higgs boson mass in the \(H \to ZZ^{*} \to 4\ell \) and \(H \to \gamma \gamma \) channels with \(\sqrt s \) = 13 TeV \(pp\) collisions using the ATLAS detector,” Phys. Lett. B 784, 345–366 (2018); arXiv:1806.00242.

  16. R. Aaij et al. (LHCb Collab.), “Angular analysis of the \({{B}^{0}} \to {{K}^{{*0}}}{{\mu }^{ + }}{{\mu }^{ - }}\) decay using 3 fb–1 of integrated luminosity,” J. High Energy Phys., No. 2, 104 (2016); arXiv: 1512.04442.

  17. J. Albrecht, F. Bernlochner, M. Kenzie, S. Reichert, D. Straub, and A. Tully, “Future prospects for exploring present day anomalies in flavour physics measurements with Belle II and LHCb” (2017); arXiv: 1709.10308 [hep-ph].

Download references

ACKNOWLEDGMENTS

The authors would like to thank the organizers of the conference for the opportunity to give a talk. In addition, the correspondence with F. Straub, D. van Dyk, and F. Mahmoudi regarding Flavio and Superiso codes is appreciated.

Funding

The support from the Grant of the Russian Federation Government, Agreement no. 14.W03.31.0026 from 15.02.2018 is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Bednyakov or A. I. Mukhaeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bednyakov, A.V., Mukhaeva, A.I. Light Scalars in NMSSM and \(B \to K{\kern 1pt} *{\kern 1pt} ll\) Angular Observables. Phys. Part. Nuclei 51, 640–644 (2020). https://doi.org/10.1134/S1063779620040115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779620040115

Navigation