Skip to main content
Log in

Towards the Modeling of Impurity-Related Defects in Irradiated n-Type Germanium: a Challenge to Theory

  • ELECTRONIC PROPERTIES OF SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Electrical measurements on heavily doped n-type germanium subjected to gamma-irradiation show that the features of impurity-related defect formation before np conversion of conductivity type are the same as those previously observed in lightly and moderately doped materials, thus extending the range of doping from ≈1014 to ≈1016 cm–3. It is clear now that the presently adopted model of the dominant impurity-related defects as simple vacancy-impurity pairs in irradiated n-Ge, in analogy to such defects reliably identified in irradiated n-Si, appears to be inconsistent with the experimental information collected so far. As a consequence, the impurity diffusion simulations in heavily doped Ge based on this model need to be reconsidered. The requirements to be met while modeling impurity-related defects in irradiated n-Ge in accordance with the reliable experimental data are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Several earlier illustrations of this kind can be found in [26, 27]. Taking an opportunity a misprint in Figs. 4a, 4b [27] must be corrected: the ionization energy of phosphorus in Ge crystals is 12.0 meV.

REFERENCES

  1. B. Pajot, Springer Ser. Solid State Sci. 158, 470 (2010).

    ADS  Google Scholar 

  2. U. M. Gösele and T. Y. Tan, in Materials Science and Technology, Ed. by R. W. Cahn, P. Haasen, and E. J. Kramer (Wiley-VCH, Weinheim, 2005), Vol. 4/5, p. 197.

  3. S. Brotzmann, H. Bracht, J. Lundsgaard Hansen, A. Nylandsted Larsen, E. Simoen, E. E. Haller, J. S. Christensen, and P. Werner, Phys. Rev. B 77, 235207 (2008).

    Article  ADS  Google Scholar 

  4. A. Chroneos, R. W. Grimes, B. P. Uberuaga, and H. Bracht, Phys. Rev. B 77, 235208 (2008).

    Article  ADS  Google Scholar 

  5. H. Bracht, S. Schneider, J. N. Klug, C. Y. Liao, J. Lundsgaard Hansen, E. E. Haller, A. Nylandsted Larsen, D. Bougeard, M. Posselt, and C. Wündisch, Phys. Rev. Lett. 103, 255501 (2009).

    Article  ADS  Google Scholar 

  6. L. C. Kimerling, Inst. Phys. Conf. Ser. 31, 221 (1977).

  7. V. P. Markevich, A. R. Peaker, S. B. Lastovskii, L. I. Murin, and J. L. Lindström, J. Phys.: Condes. Matter 15, S22779 (2003).

  8. A. Nylansted Larsen, A. Mesli, K. Bonde Nielsen, H. Kortegaard Nielsen, L. Dobaczewski, J. Adley, R. Jones, D. W. Palmer, P. R. Briddon, and S. Öberg, Phys. Rev. Lett. 97, 106402 (2006).

    Article  ADS  Google Scholar 

  9. G. D. Watkins, J. W. Corbett, and R. M. Walker, J. Appl. Phys. 30, 1198 (1959).

    Article  ADS  Google Scholar 

  10. . D. Watkins and J. W. Corbett, Phys. Rev. 134, A1359 (1964)

    Article  ADS  Google Scholar 

  11. E. L. Elkin and G. D. Watkins, Phys. Rev. 174, 881 (1968).

    Article  ADS  Google Scholar 

  12. V. V. Emtsev, N. V. Abrosimov, V. V. Kozlovskii, and G. A. Oganesyan, Semiconductors 48, 1438 (2014).

    Article  ADS  Google Scholar 

  13. N. S. Patel’, C. Monmeyran, A. Agarwal, and L. C. Kimerling, J. Appl. Phys. 118, 155702 (2015).

    Article  ADS  Google Scholar 

  14. J. Fage-Pedersen, A. Nylandsted Larsen, and A. Mesli, Phys. Rev. B 62, 10116 (2000).

    Article  ADS  Google Scholar 

  15. V. P. Markevich, A. R. Peaker, V. V. Litvinov, V. V. Emtsev, and L. I. Murin, J. Appl. Phys. 95, 4078 (2004).

    Article  ADS  Google Scholar 

  16. V. P. Markevich, I. D. Hawkins, A. R. Peaker, K. V. Emtsev, V. V. Emtsev, V. V. Litvinov, L. I. Murin, and L. Dobaczewski, Phys. Rev. B 70, 235213 (2004).

    Article  ADS  Google Scholar 

  17. V. P. Markevich, Mater. Sci. Semicond. Process. 9, 589 (2006).

    Article  Google Scholar 

  18. V. P. Markevich, A. R. Peaker, A. V. Markevich, V. V. Litvinov, L. I. Murin, and V. V. Emtsev, Mater. Sci. Semicond. Process. 9, 613 (2006).

    Article  Google Scholar 

  19. A. V. Markevich, V. V. Litvinov, V. V. Emtsev, V. P. Markevich, and A. R. Peaker, Phys. B (Amsterdam, Neth.) 376–377, 61 (2006).

  20. C. Nyamhere, F. D. Auret, A. G. M. Das, and A. Chawanda, Phys. B (Amsterdam, Neth.) 401–402, 499 (2007).

  21. C. E. Lindberg, J. Lundsgaard Hansen, P. Bornholt, A. Mesli, L. Dobaczewski, K. Bonde Nielsen, and A. Nylandsted Larsen, Appl. Phys. Lett. 87, 172103 (2005).

    Article  ADS  Google Scholar 

  22. J. Coutinho, S. Öberg, V. J. B. Torres, M. Barroso, R. Jones, and P. R. Briddon, Phys. Rev. B 73, 235213 (2006).

    Article  ADS  Google Scholar 

  23. J. Coutinho, V. J. B. Torres, A. Carvalho, R. Jones, S. Öberg, and P. R. Briddon, Mater. Sci. Semicond. Process. 9, 477 (2006).

    Article  Google Scholar 

  24. A. Carvalho, R. Jones, J. Coutinho, M. Shaw, V. J. B. Torres, S. Öberg, and P. R. Briddon, Mater. Sci. Semicond. Process. 9, 489 (2006).

    Article  Google Scholar 

  25. A. Carvalho, R. Jones, J. Coutinho, V. J. B. Torres, S. Öberg, J. M. Campanera Alsina, M. Shaw, and P. R. Briddon, Phys. Rev. B 75, 115206 (2007).

    Article  ADS  Google Scholar 

  26. V. Emtsev and G. Oganesyan, AIP Conf. Proc. 1583, 3 (2014).

    Article  ADS  Google Scholar 

  27. V. V. Emtsev, V. V. Kozlovski, D. S. Poloskin, and G. A. Oganesyan, Semiconductors 51, 1571 (2017).

    Article  ADS  Google Scholar 

  28. Gemanium-Based Technologies. From Materials to Devices, Ed. by C. Claeys and E. Simoen (Elsevier, Amsterdam, Boston, etc., 2007).

  29. G. D. Watkins, Mater. Sci. Semicond. Process. 3, 227 (2000).

    Article  Google Scholar 

  30. V. V. Emtsev, T. V. Mashovets, and E. A. Tropp, Sov. Phys. Semicond. 12, 169 (1978).

    Google Scholar 

  31. V. V. Emtsev, N. V. Abrosimov, V. V. Kozlovskii, G. A. Oganesyan, and D. S. Poloskin, Semiconductors 50, 1291 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Emtsev.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emtsev, V.V., Oganesyan, G.A. Towards the Modeling of Impurity-Related Defects in Irradiated n-Type Germanium: a Challenge to Theory. Semiconductors 54, 1388–1394 (2020). https://doi.org/10.1134/S106378262011007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378262011007X

Keywords:

Navigation