Skip to main content
Log in

Unoccupied Electron States of Ultrathin Films of Thiophene–Phenylene Cooligomers on the Surface of Polycrystalline Gold

  • POLYMERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Unoccupied electronic states in the energy range from 5 to 20 eV above the Fermi level have been studied in ultrathin films of dimethyl-substituted thiophene–phenylene cooligomers CH3-phenylene–thiophene–thiophene–phenylene–CH3 (CH3–PTTP–CH3) on polycrystalline gold surfaces of two types: the ex situ Au layer thermally deposited in a special chamber and the in situ Au surface prepared inside an analytical chamber. The film structure is studied by the X-ray diffraction (XRD) method. The formation of a superposition of the amorphous phase and the crystalline phase with period 3.8 nm is discussed. The energy positions of the maxima of the unoccupied electronic states and the character of formation of the boundary potential barrier have been studied by the total current spectroscopy (TCS). The structures of the FSTCS maxima of the 5–7-nm-thick CH3–PTTP–CH3 films are not different when using various types of Au substrates and the ZnO semiconductor surface prepared by atomic layer deposition (ALD). As a CH3–PTTP–CH3 layer is deposited on the ex situ Au and in situ Au surfaces, the electron work function increases insignificantly (by ~0.1 eV) as the coating thickness increases to 5–7 nm. At such thicknesses of the CH3–PTTP–CH3 films, the electron work function is 4.7 ± 0.1 eV in the case of the ex situ Au substrate and 4.9 ± 0.1 eV in the case of the in situ Au substrate. A possible influence of the processes of physicochemical interaction at the boundary between the film and the substrate on the formation of the boundary potential barrier in the structures under study is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, et al., Science (Washington, DC, U. S.) 336, 327 (2012).

    Article  ADS  Google Scholar 

  2. A. S. Sizov, E. V. Agina, and S. A. Ponomarenko, Russ. Chem. Rev. 87, 1226 (2018).

    Article  ADS  Google Scholar 

  3. L. Grzadziel, M. Krzywiecki, G. Genchev, and A. Erbe, Synth. Met. 223, 199 (2017).

    Article  Google Scholar 

  4. M. Gruenewald, L. K. Schirra, P. Winget, M. Kozlik, P. F. Ndione, A. K. Sigdel, J. J. Berry, R. Forker, J.‑L. Brédas, T. Fritz, and O. L. A. Monti, J. Phys. Chem. C 119, 4865 (2015).

    Article  Google Scholar 

  5. B. Handke, L. Klita, and W. Niemiec, Surf. Sci. 666, 70 (2017).

    Article  ADS  Google Scholar 

  6. I. G. Hill, J. Schwartz, and A. Kahn, Org. Electron. 1, 5 (2000).

    Article  Google Scholar 

  7. T. Sengoku, T. Yamao, and S. Hotta, J. Non-Cryst. Solids 358, 2525 (2012).

    Article  ADS  Google Scholar 

  8. F. Sasaki, Y. Kawaguchi, H. Mochizuki, S. Haraichi, T. Ishitsuka, T. Ootsuka, T. Tomie, S. Watanabe, Y. Shimoi, T. Yamao, and S. Hotta, Mol. Cryst. Liq. Cryst. 620, 153 (2015).

    Article  Google Scholar 

  9. M. S. Kazantsev, V. G. Konstantinov, D. I. Dominskiy, V. V. Bruevich, V. A. Postnikov, Y. N. Luponosov, V. A. Tafeenko, N. M. Surin, S. A. Ponomarenko, and D. Y. Paraschuk, Synt. Met. 232, 60 (2017).

    Article  Google Scholar 

  10. V. A. Postnikov, Y. I. Odarchenko, A. V. Iovlev, V. V. Bruevich, A. Y. Pereverzev, L. G. Kudryashova, V. V. Sobornov, L. Vidal, D. Chernyshov, Y. N. Luponosov, O. V. Borshchev, N. M. Surin, S. A. Ponomarenko, D. A. Ivanov, and D. Y. Paraschuk, Cryst. Growth Des. 14, 1726 (2014).

    Article  Google Scholar 

  11. A. S. Sizov, E. V. Agina, and S. A. Ponomarenko, Usp. Khim. 88, 1220 (2019).

    Article  Google Scholar 

  12. L. G. Kudryashova, M. S. Kazantsev, V. A. Postnikov, V. V. Bruevich, Y. N. Luponosov, N. M. Surin, O. V. Borshchev, S. A. Ponomarenko, M. S. Pshenichnikov, and D. Y. Paraschuk, ACS Appl. Mater. Interfaces 8, 10088 (2016).

    Article  Google Scholar 

  13. Y. Yomogida, T. Takenobu, H. Shimotani, K. Sawabe, S. Z. Bisri, T. Yamao, S. Hotta, and Y. Iwasa, Appl. Phys. Lett. 97, 173301 (2010).

    Article  ADS  Google Scholar 

  14. A. N. Aleshin, I. P. Shcherbakov, D. A. Kirilenko, L. B. Matyushkin, and V. A. Moshnikov, Phys. Solid State 61, 256 (2019).

    Article  ADS  Google Scholar 

  15. P. S. Krylov, A. S. Berestennikov, S. A. Fefelov, A. S. Komolov, and A. N. Aleshin, Phys. Solid State 58, 2567 (2016).

    Article  ADS  Google Scholar 

  16. Y. Kawaguchi, F. Sasaki, H. Mochizuki, T. Ishitsuka, T. Tomie, T. Ootsuka, S. Watanabe, Y. Shimoi, T. Yamao, and S. Hotta, J. Appl. Phys. 113, 083710 (2013).

    Article  ADS  Google Scholar 

  17. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, G. D. Zashikhin, S. A. Pshenichnyuk, O. V. Borshchev, S. A. Ponomarenko, and B. Handke, Phys. Solid State 60, 1029 (2018).

    Article  ADS  Google Scholar 

  18. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, V. S. Sobolev, A. V. Koroleva, S. A. Pshenichnyuk, N. L. Asfandiarov, A. Modelli, B. Handke, O. V. Borshchev, and S. A. Ponomarenko, J. Electron. Spectr. Rel. Phenom. 235, 40 (2019).

    Article  Google Scholar 

  19. A. S. Komolov, E. F. Lazneva, S. N. Akhremtchik, N. S. Chepilko, and A. A. Gavrikov, J. Phys. Chem. C 117, 12633 (2013).

    Article  Google Scholar 

  20. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, A. V. Baramygin, G. D. Zashikhin, and S. A. Pshenichnyuk, Phys. Solid State 58, 377 (2016).

    Article  ADS  Google Scholar 

  21. S. A. Pshenichnyuk, A. Modelli, E. F. Lazneva, and A. S. Komolov, J. Phys. Chem. A 120, 2667 (2016).

    Article  Google Scholar 

  22. Y. Tong, F. Nicolas, S. Kubsky, H. Oughaddou, F. Sirotti, V. Esaulov, and A. Bendounan, J. Phys. Chem. C 121, 5050 (2017).

    Article  Google Scholar 

  23. A. Y. Sosorev, M. K. Nuraliev, E. V. Feldman, D. R. Maslennikov, O. V. Borshchev, M. S. Skorotetcky, N. M. Surin, M. S. Kazantsev, S. A. Ponomarenko, and D. Y. Paraschuk, Phys. Chem. Chem. Phys. 21, 11578 (2019).

    Article  Google Scholar 

  24. A. S. Komolov, Y. M. Zhukov, E. F. Lazneva, A. N. Aleshin, S. A. Pshenichnuk, N. B. Gerasimova, Yu. A. Panina, G. D. Zashikhin, and A. V. Baramygin, Mater. Des. 113, 319 (2017).

    Article  Google Scholar 

  25. I. A. Averin, A. A. Karmanov, V. A. Moshnikov, I. A. Pronin, S. E. Igoshina, A. P. Sigaev, and E. I. Terukov, Phys. Solid State 57, 2373 (2015).

    Article  ADS  Google Scholar 

  26. J. Hwang, A. Wan, and A. Kahn, Mater. Sci. Eng. R 64, 1 (2009).

    Article  Google Scholar 

  27. S. A. Kukushkin, A. V. Osipov, and A. I. Romanychev, Phys. Solid State 58, 1448 (2016).

    Article  ADS  Google Scholar 

  28. A. S. Komolov, E. F. Lazneva, and S. N. Akhremtchik, Appl. Surf. Sci. 256, 2419 (2010).

    Article  ADS  Google Scholar 

  29. I. Bartos, Progr. Surf. Sci. 59, 197 (1998).

    Article  ADS  Google Scholar 

  30. A. S. Komolov, P. J. Moller, Y. G. Aliaev, E. F. Lazneva, S. A. Akhremchik, F. S. Kamounah, J. Mortenson, and K. Schaumburg, J. Mol. Struct. 744–747, 145 (2005).

    Article  ADS  Google Scholar 

  31. A. S. Komolov and P. J. Moeller, Appl. Surf. Sci. 244, 573 (2005).

    Article  ADS  Google Scholar 

  32. Y. Stöhr, NEXAFS Spectroscopy (Springer, Berlin, 2003).

    Google Scholar 

  33. T. Graber, F. Forster, A. Schoell, and F. Reinert, Surf. Sci. 605, 878 (2011).

    Article  ADS  Google Scholar 

  34. A. L. Shu, W. E. McClain, J. Schwartz, and A. Kahn, Org. Electron. 15, 2360 (2014).

    Article  Google Scholar 

  35. S. Braun, W. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).

    Article  Google Scholar 

  36. A. S. Komolov and P. J. Moeller, Synth. Met. 138, 119 (2003).

    Article  Google Scholar 

  37. A. S. Komolov, S. N. Akhremtchik, and E. F. Lazneva, Spectrochim. Acta A 798, 708 (2011).

    Article  ADS  Google Scholar 

  38. M. Krzywiecki, L. Grzadziel, P. Powroznik, M. Kwoka, J. Rechmann, and A. Erbe, Phys. Chem. Chem. Phys. 20, 16092 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the Research Park of the St. Petersburg State University “Physical methods of surface investigation,” “Innovation technologies of composite nanomaterials” and “X-ray diffraction methods of studies.”

Funding

This work was supported by the Russian Foundation for Basic Research, projects nos. 18-03-00020 and 18-03-00179. The synthesis of CH3–PTTP–CH3 was supported by the Ministry of Science and Higher Education of the Russian federation in the framework of state task to the Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences. The studies of ZnO layers were supported by the Russian Foundation for Basic Research, project no. 20-03-00026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Komolov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komolov, A.S., Lazneva, E.F., Gerasimova, N.B. et al. Unoccupied Electron States of Ultrathin Films of Thiophene–Phenylene Cooligomers on the Surface of Polycrystalline Gold. Phys. Solid State 62, 1960–1966 (2020). https://doi.org/10.1134/S1063783420100170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100170

Keywords:

Navigation