Skip to main content
Log in

Combined Real-Time Study of Dielectric Response and Piezoresponse of Pb(Mg1/3Nb2/3)O3 Relaxor in an Electric Field

  • FERROELECTRICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A method of synchronous measurement of the piezoresponse signal and electrical impedance when studying the processes of polarization switching in an external electric field has been described. Using the developed technique, the processes of switching ferroelectric (FE) phase of lead magnoniobate induced by an electric field are studied. It is shown that a polydomain structure with a weak piezoresponse is formed during the initial appearance of the FE phase. A change in the direction of the external field leads to polarization switching, and the switching process passes through an intermediate glass-like phase. Training the sample by multiple switching leads to a sharp increase in piezoresponse, which can be associated with a single-domain state formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. Bovtun, S. Veljko, S. Kamba, J. Petzelt, S. Vakhrushev, Y. Yakymenko, K. Brinkman, and N. Setter, J. Eur. Ceram. Soc. 26, 2867 (2006).

    Article  Google Scholar 

  2. G. A. Samara, J. Phys.: Condens. Matter 15, 367 (2003).

    ADS  Google Scholar 

  3. R. Grigalaitis, J. Banys, A. Brilingas, J. Grigas, A. Kania, and A. Slodczyk, Ferroelectrics 339, 21 (2006).

    Article  Google Scholar 

  4. Y. Zhang, Z. Chen, W. Cao, and Z. Zhang, Appl. Phys. Lett. 111, 172902 (2017).

    Article  ADS  Google Scholar 

  5. B. J. Rodriguez, S. Jesse, A. N. Morozovska, S. V. Svechnikov, D. A. Kiselev, A. L. Kholkin, A. A. Bokov, Z.‑G. Ye, and S. V. Kalinin, J. Appl. Phys. 108, 42006 (2010).

    Article  Google Scholar 

  6. V. V. Shvartsman and A. L. Kholkin, J. Adv. Dielectr. 2, 1241003 (2012).

    Article  Google Scholar 

  7. P. Zelenovskiy, E. Greshnyakov, D. Chezganov, L. Gimadeeva, E. Vlasov, Q. Hu, X. Wei, and V. Shur, Crystals 9, 65 (2019).

    Article  Google Scholar 

  8. A. A. Bokov and Z.-G. Ye, J. Mater. Sci. 41, 31 (2006).

    Article  ADS  Google Scholar 

  9. R. A. Cowley, S. N. Gvasaliya, S. G. Lushnikov, B. Roessli, and G. M. Rotaru, Adv. Phys. 60, 229 (2011).

    Article  ADS  Google Scholar 

  10. . Sommer, N. K. Yushin, and J. J. van der Klink, Phys. Rev. B 48, 13230 (1993)

    Article  ADS  Google Scholar 

  11. E. V. Kolla, S. B. Vakhrushev, E. Yu. Koroleva, and N. M. Okuneva, Phys. Solid State 38, 1202 (1996).

    ADS  Google Scholar 

  12. N. Novak, R. Pirc, and Z. Kutnjak, Ferroelectrics 426, 31 (2012).

    Article  Google Scholar 

  13. X. Zhao, W. Qu, X. Tan, A. A. Bokov, and Z.-G. Ye, Phys. Rev. B 75, 104106 (2007).

    Article  ADS  Google Scholar 

  14. I. P. Raevski, A. S. Emelyanov, F. I. Savenko, S. I. Raevskaya, S. A. Prosandeev, E. V. Colla, D. Viehland, W. Kleemann, S. B. Vakhrushev, J.-L. Dellis, M. el Marssi, and L. Jastrabik, Ferroelectrics 339, 137 (2006).

    Article  Google Scholar 

  15. I. P. Raevski, S. A. Prosandeev, A. S. Emelyanov, S. I. Raevskaya, E. V. Colla, D. Viehland, W. Kleemann, S. B. Vakhrushev, J-L. Dellis, M. El Marssi, and L. Jastrabik, Phys. Rev. B 72, 184104 (2005).

    Article  ADS  Google Scholar 

  16. N. Novak and Z. Kutnjak, Ferroelectrics 447, 40 (2013).

    Article  Google Scholar 

  17. E. V. Colla, E. Yu. Koroleva, N. M. Okuneva, and S. B. Vakhrushev, Ferroelectrics 184, 209 (1996).

    Article  Google Scholar 

  18. A. F. Vakulenko, S. B. Vakhrushev, and A. V. Filimonov, Ferroelectrics 542, 77 (2019).

    Article  Google Scholar 

  19. A. A. Bokov, B. J. Rodriguez, X. Zhao, J.-H. Ko, S. Jesse, X. Long, W. Qu, T. H. Kim, J. D. Budai, A. N. Morozovska, S. Kojima, X. Tan, S. V. Kalinin, and Z.-G. Ye, Z. Kristallogr. 226, 99 (2011).

    Article  Google Scholar 

  20. W.-Y. Chang, C.-C. Chung, Z. Yuan, C.-H. Chang, J. Tian, D. Viehland, J.-F. Li, J. L. Jones, and X. Jiang, Acta Mater. 143, 166 (2018).

    Article  Google Scholar 

  21. S. M. Yang, J. Y. Jo, D. J. Kim, H. Sung, T. W. Noh, H. N. Lee, J.-G. Yoon, and T. K. Song, Appl. Phys. Lett. 92, 252901 (2008).

    Article  ADS  Google Scholar 

  22. J. H. Wang, Smart Mater. Struct. 26, 105045 (2017).

    Article  ADS  Google Scholar 

  23. T. Jungk, A. Hoffmann, and E. Soergel, Appl. Phys. Lett. 89, 163507 (2006).

    Article  ADS  Google Scholar 

  24. L. Collins, Y. Liu, O. S. Ovchinnikova, and R. Proksch, ACS Nano 13, 8055 (2019).

    Article  Google Scholar 

  25. Y. Liu, Y. Sun, W. Lu, H. Wang, Z. Wang, B. Yu, T. Li, and K. Zeng, J. Materiomics 6, 109 (2020).

  26. S. B. Vakhrushev, J.-M. Kiat, and B. Dkhil, Solid State Commun. 103, 477 (1997).

    Article  ADS  Google Scholar 

Download references

Funding

The work by A.F. Vakulenko was supported by the Russian Foundation for Basic Research (project no. 20-02-00274A), the work by E.Yu Koroleva was supported by the Russians Foundation for Basic Research and GFEN of China (project no 19-52-53026 GFEN_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Vakulenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakulenko, A.F., Vakhrushev, S.B. & Koroleva, E.Y. Combined Real-Time Study of Dielectric Response and Piezoresponse of Pb(Mg1/3Nb2/3)O3 Relaxor in an Electric Field. Phys. Solid State 62, 1873–1879 (2020). https://doi.org/10.1134/S1063783420100340

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100340

Keywords:

Navigation