Skip to main content
Log in

Multistability of a Dipole Nanocell during Its Pulsed Magnetization Reversal

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The dynamics of magnetization reversal of a nanocell composed of two magnetouniaxial nanoparticles by a short Gaussian magnetic-field pulse is investigated. This dipole-coupled system is multistable and has four equilibrium states. The conditions, under which the nanocell is switched to one of three states or returns to the initial configuration, are found. It is shown that the character of precession dynamics of the magnetic moment and choice of the final nanocell state depend on the pulse amplitude and width and the mutual easy-axis orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. S. A. Gudoshnikov, B. Ya Liubimov, A. V. Popova, and N. A. Usov, J. Magn. Magn. Mater. 324, 3690 (2012).

    Article  ADS  Google Scholar 

  2. T. Kiseleva, S. Zholudev, A. Novakova, and T. Grigoryeva, Comput. Struct. 138, 12 (2016).

    Article  Google Scholar 

  3. M. F. Hansen, P. E. Jönsson, P. Nordblad, and P. Svedlindh, J. Phys.: Condens. Matter 14, 4901 (2002).

    ADS  Google Scholar 

  4. A. M. Shutyǐ, S. V. Eliseeva, and D. I. Sementsov, Phys. Rev. B 91, 024421 (2015).

    Article  ADS  Google Scholar 

  5. A. M. Shutyǐ and D. I. Sementsov, J. Magn. Magn. Mater. 401, 1033 (2016).

    Article  ADS  Google Scholar 

  6. N. Eibagi, J. J. Kan, F. E. Spada, and E. E. Fullerton, IEEE Magn. Lett. 3, 4500204 (2012).

    Article  Google Scholar 

  7. E. Z. Meilikhov and R. M. Farzetdinova, Phys. Solid State 56, 2408 (2014).

    Article  ADS  Google Scholar 

  8. H. W. Schumacher, C. Chappert, P. Crozat, R. C. Sousa, P. P. Freitas, J. Miltat, J. Fassbender, and B. Hillebrands, Phys. Rev. Lett. 90, 017201 (2003).

    Article  ADS  Google Scholar 

  9. H. W. Schumacher, C. Chappert, R. C. Sousa, P. P. Freitas, and J. Miltat, Phys. Rev. Lett. 90, 017204 (2003).

    Article  ADS  Google Scholar 

  10. A. V. Kimel, B. A. Ivanov, R. V. Pisarev, P. A. Usachev, A. Kirilyuk, and Th. Rasing, Nat. Phys. 5, 727 (2009).

    Article  Google Scholar 

  11. S. Takuya, Sung-Jin Cho, I. Ryugo, Ts. Shimura, K. Kuroda, H. Ueda, Yu. Ueda, B. A. Ivanov, F. Nori, and M. Fiebig, Phys. Rev. Lett. 105, 077402 (2010).

    Article  ADS  Google Scholar 

  12. A. Yu. Galkin and B. A. Ivanov, JETP Lett. 88, 249 (2008).

    Article  ADS  Google Scholar 

  13. Yu. I. Dzhezherya, V. P. Yurchuk, K. O. Demishev, and V. N. Korenivskii, J. Exp. Theor. Phys. 117, 1059 (2013).

    Article  Google Scholar 

  14. A. Sukhov and J. Berakdar, Phys. Rev. B 79, 134433 (2009).

    Article  ADS  Google Scholar 

  15. V. V. Randoshkin, A. M. Saletsky, N. N. Usmanov, and D. B. Chopornyak, Phys. Solid State 46, 474 (2004).

    Article  ADS  Google Scholar 

  16. E. I. Il’yashenko, O. S. Kolotov, A. V. Matyunin, O. A. Mironets, and V. A. Pogozhev, Tech. Phys. 51, 1534 (2006).

    Article  Google Scholar 

  17. D. A. Balaev, A. A. Krasikov, D. A. Velikanov, S. I. Popkov, N. V. Dubynin, S. V. Stolyar, V. P. Ladygina, and R. N. Yaroslavtsev, Phys. Solid State 60, 1973 (2018).

    Article  ADS  Google Scholar 

  18. Yu. I. Dzhezherya, K. O. Demishev, and V. N. Korenivskii, J. Exp. Theor. Phys. 115, 284 (2012).

    Article  ADS  Google Scholar 

  19. A. M. Shutyi and D. I. Sementsov, Phys. Met. Metallogr. 121, 238 (2019).

    Article  ADS  Google Scholar 

  20. A. M. Shutyi and D. I. Sementsov, JETP Lett. 108, 740 (2018).

    Article  ADS  Google Scholar 

  21. A. M. Shutyi and D. I. Sementsov, Phys. Solid State 61, 1736 (2019).

    Article  ADS  Google Scholar 

  22. A. M. Shuty, S. V. Eliseeva, and D. I. Sementsov, Superlatt. Microstruct. 132, 106158 (2019).

    Article  Google Scholar 

  23. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Nauka, Moscow, 1994; CRC, Boca Raton, FL, 1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Shutyi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shutyi, A.M., Sementsov, D.I. Multistability of a Dipole Nanocell during Its Pulsed Magnetization Reversal. Phys. Solid State 62, 1850–1860 (2020). https://doi.org/10.1134/S1063783420100303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100303

Keywords:

Navigation