Skip to main content
Log in

First-Principles Study of Ultrathin Single-Walled Nanotube-Based Single-Electron Transistor for Fast-Switching Applications

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This work presents modeling and functioning of nanotube island single-electron transistor (SET), through first-principles approach based on density functional theory and non-equilibrium Green’s function. Ultrathin single-walled carbon (C), boron nitride (BN), and silicon carbide (SiC) nanotubes in armchair (3, 3) and zigzag (5, 0) structures have been adopted as island in the SET model. The nanotube (NT) islands are weakly coupled to gold metal electrode, explained by sequential transport phenomenon. Present study evaluates ionization energies, electron affinities, and additional energies for all the considered NTs in both isolated and SET environment, which are further analyzed by plotting total energies and Coulomb blockade diagrams. Also, various types of dielectric material and their thickness have been investigated, owing to measuring the stability of charge as well as dependence of conductance on gate and source-drain voltage. Observed results show noticeably enhanced conductance for ultrathin single-walled C, BN, and SiC zigzag NTs than that of their corresponding armchair NTs in the SET systems, demonstrating their potential for fast-switching device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, Nature (London, U.K.) 389, 699 (1997).

    Article  ADS  Google Scholar 

  2. J. Zhang, S. Liu, L. Kong, J. P. Nshimiyimana, X. Hu, X. Chi, P. Wu, J. Liu, W. Chu, and L. Sun, Adv. Electron. Mater. 4, 1700628 (2018).

    Article  Google Scholar 

  3. K. Moth-Poulsen, Handbook of Single-Molecule Electronics (Pan Stanford, Singapore, 2016).

    Book  Google Scholar 

  4. W. Liang, M. P. Shores, M. Bockrath, L. R. Long, and H. Park, Nature (London, U.K.) 417 (6890), 725 (2002).

    Article  ADS  Google Scholar 

  5. S. Rani and S. J. Ray, Carbon 144, 235 (2019).

    Article  Google Scholar 

  6. S. J. Ray, J. Appl. Phys. 118, 044307 (2015).

    Article  ADS  Google Scholar 

  7. R. M. Lewis, C. T. Harris, and E. A. Shaner, and E. A. Shaner, AIP Adv. 8, 105317 (2018).

    Article  ADS  Google Scholar 

  8. A. Kumar and D. Dubey, Adv. Electron. Electr. Eng. 3, 57 (2013).

    Google Scholar 

  9. Y. Wu, R. Zhao, C. Lu, and D. Guo, J. Comput. Electron. 19, 222 (2020).

    Article  Google Scholar 

  10. M. F. L. de Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Science (Washington, DC, U. S.) 339 (6119), 535 (2013).

    Article  ADS  Google Scholar 

  11. M. Ates, A. A. Eker, and B. Eker, J. Adhes. Sci. Technol. 31, 1977 (2017).

    Article  Google Scholar 

  12. J. B. Casady and R. W. Johnson, Solid State Electron. 39, 1409 (1996).

    Article  ADS  Google Scholar 

  13. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi, ACS Nano 4, 2979 (2010).

    Article  Google Scholar 

  14. M. Machon, S. Reich, C. Thomsen, D. Sanchez-Portal, and P. Ordejon, Phys. Rev. B 66, 155410 (2002).

    Article  ADS  Google Scholar 

  15. Atomistix ToolKit-Virtual Nanolab (ATK-VNL), Quantum Wise Simulator, Version 2014.3. http://quantumwise.com/.

  16. J. C. Riviere, Appl. Phys. Lett. 8, 172 (1996).

    Article  ADS  Google Scholar 

  17. S. Parashar, P. Srivastava, and M. Pattanaik, Appl. Nanosci. 2, 385 (2012).

    Article  ADS  Google Scholar 

  18. S. Parashar, P. Srivastava, and M. Pattanaik, IOP Conf. Ser. Mater. Sci. Eng. 73, 012117 (2015).

  19. K. Stokbro, J. Phys. Chem. C 114, 20461 (2010).

    Article  Google Scholar 

  20. S. K. Jain and P. Srivastava, Comput. Mater. Sci. 50, 3038 (2011).

    Article  Google Scholar 

  21. J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is thankful to Banasthali Vidyapith, Rajasthan, India, for the computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Parashar.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parashar, S. First-Principles Study of Ultrathin Single-Walled Nanotube-Based Single-Electron Transistor for Fast-Switching Applications. Phys. Solid State 62, 1807–1814 (2020). https://doi.org/10.1134/S1063783420100236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100236

Keywords:

Navigation