Skip to main content
Log in

Improvement of Photocatalytic Activity by Zn Doping in Cu2O

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Degradation of organic pollutants got more attention for detoxification of water. In this paper, pure and Zn-doped Cu2O particles were successfully synthesized by water bath co-precipitation method. X-ray diffraction (XRD) study confirmed the cubic structure of Cu2O. Zn doping resulted in reduction in crystallite size without changing d-spacing and crystal structure. Zn doping converts perfect cube to distorted sphere with enhanced surface area that is effective for photocatalytic applications. Elemental study confirmed the uniform distribution of Cu, Zn, and O atoms in the sample. X-ray photoelectron spectra (XPS) analysis showed peak shift in the electronic states of O with higher oxygen vacancy defects. Band gap of Cu2O after Zn doping increased from 1.84 to 1.91 eV. The photocatalytic activity towards methylene blue (MB) dye photodegradation under visible light reached 96% in 120 min after Zn doping compared to 95% in 180 min for pure Cu2O. The improvement in photocatalytic degradation after Zn doping was achieved by the slow electron-hole recombination, band gap increases, oxygen vacancy defects, and higher surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. United Nations World Water Assessment Programme, The United Nations World Water Development Report 2017 (UNESCO, Paris, France, 2017).

  2. B. Lin and X. Ouyang, Energy Convers. Manage. 79, 128 (2014).

    Article  Google Scholar 

  3. M. Wainwright, Dyes Pigm. 76, 582 (2008).

    Article  Google Scholar 

  4. V. K. Sharma, Chemosphere 73, 1379 (2008).

    Article  ADS  Google Scholar 

  5. M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmad, J. Hazard. Mater. 177, 70 (2010).

    Article  Google Scholar 

  6. V. K. Gupta, I. Ali, T. A. Saleh, A. Nayak, and S. Agarwal, RSC Adv. 2, 6380 (2012).

  7. Y. T. Gaim, G. M. Tesfamariam, G. Y. Nigussie, and M. E. Ashebir, J. Compos. Sci. 3, 93 (2019).

    Article  Google Scholar 

  8. S. Álvarez-Torrellas, J. A. Peres, V. Gil-Álvarez, G. Ovejero, and J. García, Chem. Eng. J. 320, 319 (2017).

    Article  Google Scholar 

  9. N. Dorival-García, A. Zafra-Gomez, A. Navalon, J. González, and J. L. Vílchez, Sci. Total Environ. 442, 317 (2013).

    Article  ADS  Google Scholar 

  10. Y. Deng and R. Zhao, Curr. Pollut. Rep. 1, 167 (2015).

    Article  Google Scholar 

  11. A. O. Ibhadon and P. Fitzpatrick, Catalysts 3, 189 (2013).

    Article  Google Scholar 

  12. U. I. Gaya, Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids (Springer, Netherlands, 2014), p. 1.

    Book  Google Scholar 

  13. A. Bumajdad and M. Madkour, Phys. Chem. Chem. Phys. 16, 7146 (2014).

    Article  Google Scholar 

  14. X. Wang, F. Wang, Y. Sang, and H. Liu, Adv. Energy Mater. 7, 1700473 (2017).

    Article  Google Scholar 

  15. L. V. Bora and R. K. Mewada, Renewable Sustainable Energy Rev. 76, 1393 (2017).

    Article  Google Scholar 

  16. R. Fagan, D. E. McCormack, D. D. Dionysiou, and S. C. Pillai, Mater. Sci. Semicond. Process. 42, 2 (2016).

    Article  Google Scholar 

  17. N. Srinivasan, M. Anbuchezhiyan, S. Harish, and S. Ponnusamy, Appl. Surf. Sci. 494, 771 (2019).

    Article  ADS  Google Scholar 

  18. C. Xu, P. Ravi Anusuyadevi, C. Aymonier, R. Luque, and S. Marre, Chem. Soc. Rev. 48, 3868 (2019).

    Article  Google Scholar 

  19. S. B. A. Hamid, S. J. Teh, and C. W. Lai, Catalysts 7, 93 (2017).

    Article  Google Scholar 

  20. V. Scuderi, G. Amiard, S. Boninelli, S. Scalese, M. Miritello, P. M. Sberna, G. Impellizzeri, and V. Privitera, Mater. Sci. Semicond. Process. 42, 89 (2016).

    Article  Google Scholar 

  21. X. Yu, J. Zhang, J. Zhang, J. Niu, J. Zhao, Y. Wei, and B. Yao, Chem. Eng. J. 374, 316 (2019).

    Article  Google Scholar 

  22. M. Singh, D. Jampaiah, A. E. Kandjani, Y. M. Sabri, E. Della Gaspera, P. Reineck, M. Judd, J. Langley, N. Cox, J. van Embden, E. L. H. Mayes, B. C. Gibson, S. K. Bhargava, R. Ramanathan, and V. Bansal, Nanoscale 10, 6039 (2018).

    Article  Google Scholar 

  23. Y. Jiang, H. Yuan, and H. Chen, Phys. Chem. Chem. Phys. 17, 630 (2015).

    Article  Google Scholar 

  24. L. Zhang, D. Jing, L. Guo, and X. Yao, ACS Sustain. Chem. Eng. 2, 1446 (2014).

    Article  Google Scholar 

  25. D. Sudha and P. Sivakumar, Chem. Eng. Process. Process Intensif. 97, 112 (2015).

    Article  Google Scholar 

  26. N. D. Khiavi, R. Katal, S. K. Eshkalak, S. Masudy-Panah, S. Ramakrishna, and H. Jiangyong, Nanomaterials 9, 1011 (2019).

    Article  Google Scholar 

  27. X. S. Wang, Y. D. Zhang, Q. C. Wang, B. Dong, Y. J. Wang, and W. Feng, Sci. Eng. Compos. Mater. 26, 104 (2019).

    Article  Google Scholar 

  28. L. Liu, W. Yang, W. Sun, Q. Li, and J. K. Shang, ACS Appl. Mater. Interfaces 7, 1465 (2015).

    Article  Google Scholar 

  29. J. X. Kang, T. W. Chen, D. P. Meng, D. F. Zhang, L. Zheng, and L. Guo, Sci. Adv. Mater. 5, 1633 (2013).

    Article  Google Scholar 

  30. F. Hu, Y. Zou, L. Wang, Y. Wen, and Y. Xiong, Int. J. Hydrogen Energy 41, 15172 (2016).

    Article  Google Scholar 

  31. B. Heng, T. Xiao, W. Tao, X. Hu, X. Chen, B. Wang, D. Sun, and Y. Tang, Cryst. Growth. Des. 12, 3998 (2012).

    Article  Google Scholar 

  32. F. Zhang, G. Dong, M. Wang, Y. Zeng, and C. Wang, Appl. Surf. Sci. 444, 559 (2018).

    Article  ADS  Google Scholar 

  33. C. P. Goyal, D. Goyal, S. K. Rajan, N. S. Ramgir, Y. Shimura, M. Navaneethan, Y. Hayakawa, C. Muthamizhchelvan, H. Ikeda, and S. Ponnusamy, Crystals 10, 188 (2020).

    Article  Google Scholar 

  34. S. Harish, J. Archana, M. Sabarinathan, M. Navaneethan, K. D. Nisha, S. Ponnusamy, C. Muthamizhchelvan, H. Ikeda, D. K. Aswal, and Y. Hayakawa, Appl. Surf. Sci. 418, 103 (2017).

    Article  ADS  Google Scholar 

  35. R. O. Yathisha and Y. Arthoba Nayaka, J. Mater. Sci. 53, 678 (2018).

    Article  ADS  Google Scholar 

  36. V. Cretu, V. Postica, A. K. Mishra, M. Hoppe, I. Tiginyanu, Y. K. Mishra, L. Chow, N. H. De Leeuw, R. Adelung, and O. Lupan, J. Mater. Chem. A 4, 6527 (2016).

    Article  Google Scholar 

  37. D. Nath, F. Singh, and R. Das, Mater. Chem. Phys. 239, 122021 (2020).

    Article  Google Scholar 

  38. T. Jiang, Y. Wang, D. Meng, and D. Wang, J. Mater. Sci. Mater. Electron. 27, 12884 (2016).

    Article  Google Scholar 

  39. M. B. Dutt and S. K. Sen, Jpn. J. Appl. Phys. 18, 1025 (1979).

    Article  ADS  Google Scholar 

  40. M. Jacquemin, M. J. Genet, E. M. Gaigneaux, and D. P. Debecker, ChemPhysChem 14, 3618 (2013).

    Article  Google Scholar 

  41. L. Zhu, H. Li, Z. Liu, P. Xia, Y. Xie, and D. Xiong, J. Phys. Chem. C 122, 9531 (2018).

    Article  Google Scholar 

  42. R. K. Ratnesh and M. S. Mehata, AIP Adv. 5, 097114 (2015).

    Article  ADS  Google Scholar 

  43. Z. C. Ma, L. M. Wang, D. Q. Chu, H. M. Sun, and A. X. Wang, RSC Adv. 5, 8223 (2015).

Download references

ACKNOWLEDGMENTS

Authors acknowledge the Center for Instrumental Analysis, Shizuoka University, and Nanotechnology Research Centre, SRM IST for providing characterization facilities.

Funding

We are grateful to SRMIST for providing research facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ponnusamy.

Ethics declarations

The authors declare that they have no conflicts of interest. We did not have known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, C.P., Goyal, D., Ganesh, V. et al. Improvement of Photocatalytic Activity by Zn Doping in Cu2O. Phys. Solid State 62, 1796–1802 (2020). https://doi.org/10.1134/S1063783420100091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100091

Keywords:

Navigation