Skip to main content
Log in

Effect of Magnetic Field Annealing on Magnetic Properties of Iron–Gallium Alloys

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The concentration dependence of magnetic properties of iron alloys with 3–25% of gallium is studied. It was shown that the saturation induction monotonically decreases with increasing gallium content, while the coercivity exhibits a step increase with a step from 85 to 135 A/m between 12 and 15 at % Ga. The effect of magnetic field annealing (MFA) on the behavior of the residual induction and coercive force in alloy samples containing from 3 to 18 at % Ga is studied. As a result of MFA, magnetic anisotropy is induced in the alloy: magnetic hysteresis loops become narrower, the residual induction increases, and the coercivity decreases. The MFA efficiency reaches a maximum at a Ga content of 15–18 at %. The features of the structure state of iron–gallium alloys and their role in the formation of magnetic properties during annealing in a dc magnetic field are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. G. Lesnik, Induced Magnetic Anisotropy (Naukova Dumka, Kiev, 1976) [in Russian].

    Google Scholar 

  2. J. B. Restorff, M. Wun-Fogle, K. B. Hathaway, A. E. Clark, T. A. Lograsso, and G. Petculescu, J. Appl. Phys. 111, 023905 (2012). https://doi.org/10.1063/1.3674318

    Article  ADS  Google Scholar 

  3. A. E. Clark, K. B. Hathaway, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, V. M. Keppens, G. Petculescu, and R. A. Taylor, J. Appl. Phys. 93, 8621 (2003). https://doi.org/10.1063/1.1540130

    Article  ADS  Google Scholar 

  4. D. Wu, Q. Xing, R. W. McCallum, and T. A. Lograsso, J. Appl. Phys. 103, 07B307 (2008). https://doi.org/10.1063/1.2829393

  5. H. Pender and R. L. Jones, Phys. Rev. Sec. Ser. 1, 259 (1913).

  6. M. Goertz, J. Appl. Phys. 22, 964 (1951).

    Article  ADS  Google Scholar 

  7. K. Forsch, Phys. Status Solidi 42, 329 (1970).

    Article  Google Scholar 

  8. I. E. Startseva, V. V. Shulika, and Ya. S. Shur, Izv. Akad. Nauk SSSR, Ser. Fiz. 36, 1597 (1972).

    Google Scholar 

  9. V. V. Shulika, I. E. Startseva, and Ya. S. Shur, Fiz. Met. Metalloved. 40, 296 (1975).

    Google Scholar 

  10. I. E. Startseva, V. V. Shulika, and Ya. S. Shur, Izv. Akad. Nauk SSSR, Ser. Fiz. 39, 1389 (1975).

    Google Scholar 

  11. H. I. Birkenbeil and R. W. Cehn, Proc. Phys. Soc. 79, 831 (1962).

    Article  ADS  Google Scholar 

  12. J. Steinert, Phys. Status Solidi 21, K13 (1967).

    Article  ADS  Google Scholar 

  13. A. E. Clark, K. B. Hathaway, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, V. M. Keppens, G. Petculescu, and R. A. Taylor, J. Appl. Phys. 93, 8621 (2003). https://doi.org/10.1063/1.1540130

    Article  ADS  Google Scholar 

  14. J. B. Restorff, M. Wun-Fogle, K. B. Hathaway, A. E. Clark, T. A. Lograsso, and G. Petculescu, J. Appl. Phys. 111, 023905 (2012). https://doi.org/10.1063/1.3674318

    Article  ADS  Google Scholar 

  15. E. M. Summers, T. A. Lograsso, and M. Wun-Fogle, J. Mater. Sci. 42, 9582 (2007). https://doi.org/10.1007/s10853-007-2096-6

    Article  ADS  Google Scholar 

  16. J. R. Cullen, A. E. Clark, M. Wun-Fogle, J. B. Restor, and T. A. Lograsso, J. Magn. Magn. Mater. 226–230, 948 (2001). https://doi.org/10.1016/S0304-8853(00)00612-0

    Article  ADS  Google Scholar 

  17. R. Wu, J. Appl. Phys. 91, 7358 (2002). https://doi.org/10.1063/1.1450791

    Article  ADS  Google Scholar 

  18. J. Cullen, P. Zhao, and M. Wuttig, J. Appl. Phys. 101, 123922 (2007). https://doi.org/10.1063/1.2749471

    Article  ADS  Google Scholar 

  19. J. Boisse, H. Zapolsky, and A. G. Khachaturyan, Acta Mater. 59, 2656 (2011). https://doi.org/10.1016/j.Actamat.2011.01.002

    Article  Google Scholar 

  20. T. A. Lograsso and E. M. Summers, Mater. Sci. Eng. A 416, 240 (2006). https://doi.org/10.1016/j.msea.2005.10.035

    Article  Google Scholar 

  21. M. Huang and T. A. Lograsso, Appl. Phys. Lett. 95, 171907 (2009). https://doi.org/10.1063/1.3254249

    Article  ADS  Google Scholar 

  22. Yu. P. Chernenkov, N. V. Ershov, and V. A. Lukshina, Phys. Solid State 61, 1960 (2019). https://doi.org/10.1134/S1063783419110118

    Article  ADS  Google Scholar 

  23. N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and V. I. Fedorov, Phys. Solid State 51, 441 (2009). https://doi.org/10.1134/S1063783409030019

    Article  ADS  Google Scholar 

  24. N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, V. I. Fedorov, and B. K. Sokolov, Phys. B (Amsterdam, Neth.) 372, 152 (2006).https://doi.org/10.1016/j.physb.2005.10.037

  25. N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, V. I. Fedorov, and B. K. Sokolov, Phys. Met. Metallogr. 101 (Suppl. 1), S59 (2006).

    Article  ADS  Google Scholar 

  26. V. V. Serikov, N. M. Kleinerman, V. A. Lukshina, and N. V. Ershov, Phys. Solid State 52, 339 (2010). https://doi.org/10.1134/S1063783410020198

    Article  ADS  Google Scholar 

  27. B. K. Sokolov, Yu. P. Chernenkov, V. A. Lukshina, V. I. Fedorov, and N. V. Ershov, Dokl. Phys. 49, 622 (2004).

    Article  ADS  Google Scholar 

  28. Yu. P. Chernenkov, V. I. Fedorov, V. A. Lukshina, B. K. Sokolov, and N. V. Ershov, J. Magn. Magn. Mater. 254–255, 346 (2003).

    Article  ADS  Google Scholar 

  29. N. V. Ershov, V. A. Lukshina, B. K. Sokolov, Yu. P. Chernenkov, and V. I. Fedorov, J. Magn. Magn. Mater. 300, e469 (2006).

    Article  ADS  Google Scholar 

  30. Yu. P. Chernenkov, N. V. Ershov, V. A. Lukshuna, V. I. Fedorov, and B. K. Sokolov, Phys. B (Amsterdam, Neth.) 396, 220 (2007).

  31. Yu. P. Chernenkov, V. I. Fedorov, V. A. Lukshina, B. K. Sokolov, and N. V. Ershov, Phys. Met. Metallogr. 92, 193 (2001).

    Google Scholar 

  32. N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and O. P. Smirnov, Phys. Solid State 60, 1661 (2018). https://doi.org/10.1134/S106378341809010X

    Article  ADS  Google Scholar 

  33. Yu. P. Chernenkov, N. V. Ershov, and V. A. Lukshina, Phys. Solid State 61, 1960 (2019). https://doi.org/10.21883/FTT.2019.11.48398.525

    Article  ADS  Google Scholar 

  34. N. V. Ershov, V. A. Lukshina, N. M. Kleinerman, and V. V. Serikov, Phys. Solid State 54, 508 (2012).

    Article  ADS  Google Scholar 

  35. N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and V. I. Fedorov, Phys. Solid State 54, 1935 (2012).

    Article  ADS  Google Scholar 

  36. N. V. Ershov, N. M. Kleinerman, V. A. Lukshina, V. P. Pilyugin, and V. V. Serikov, Phys. Solid State 51, 1236 (2009).

    Article  ADS  Google Scholar 

  37. K. Hilfrich, W. Kölker, W. Petry, O. Scharpf, and E. Nembach, Acta Metall. Mater. 42, 743 (1994). https://doi.org/10.1016/0956-7151(94)90271-2

    Article  Google Scholar 

  38. M. Goertz, J. Appl. Phys. 22, 964 (1951).

    Article  ADS  Google Scholar 

  39. Y. Wu, Y. Chen, Ch. Meng, H. Wang, X. Ke, J. Wang, J. Liu, T. Zhang, R. Yu, J. M. D. Coey, Ch. Jiang, and H. Xu, Phys. Rev. Mater. 3, 033401 (2019).

    Article  Google Scholar 

  40. R. Bozorth, Ferromagnetism (Wiley, New York, 1993), p. 31.

    Book  Google Scholar 

  41. R. Bozorth, Ferromagnetism (Wiley, New York, 1993), p. 51.

    Book  Google Scholar 

  42. Binary Alloy Phase Diagrams, Ed. by Th. B. Massalski (ASM Int., Materials Park, OH, 1990), Vol. 2, p. 1792.

    Google Scholar 

  43. U. R. Kattner and B. P. Burton, in Phase Diagrams of Binary Iron Alloys, Ed. by H. Okamoto (ASM Int., Materials Park, OH, 1993), p. 12. http://www.asminternational.org/documents/10192/1850140/57751G_Frontmatter.pdf/c36eeb4e-d6ec-4804-b319-e5b0600ea65d.

    Google Scholar 

  44. O. Ikeda, R. Kainuma, I. Ohnuma, K. Fukamichi, and K. Ishida, J. Alloys Compd. 347, 198 (2002). https://doi.org/10.1016/S0925-8388(02)00791-0

    Article  Google Scholar 

  45. M. V. Petrik and Yu. N. Gornostyrev, Phys. Met. Metallogr. 114, 469 (2013).

    Article  ADS  Google Scholar 

  46. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  47. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  48. G. Kresse and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994). https://doi.org/10.1088/0953-8984/6/40/015

    Article  ADS  Google Scholar 

  49. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992). https://doi.org/10.1103/PhysRevB.46.6671

    Article  ADS  Google Scholar 

  50. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  51. R. Wu, J. Appl. Phys. 91, 7358 (2002). https://doi.org/10.1063/1.1450791

    Article  ADS  Google Scholar 

Download references

Funding

This study was performed within the State contract on subjects “Magnet” no. АААА-А18-118020290129-5, “Structure” no. АААА-А18-118020190116-6, and the project no. 18-10-2-5 of the program of the Ural Branch of Russian Academy of Sciences; the study was also supported by the Russian Foundation for Basic Research, project no. 18-02-00391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Lukshina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukshina, V.A., Shishkin, D.A., Kuznetsov, A.R. et al. Effect of Magnetic Field Annealing on Magnetic Properties of Iron–Gallium Alloys. Phys. Solid State 62, 1746–1754 (2020). https://doi.org/10.1134/S1063783420100182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100182

Keywords:

Navigation