Skip to main content
Log in

Decreased Production of the Superoxide Anion Radical in Neutrophils Exposed to a Near-Null Magnetic Field

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

This paper reports that pre-incubation of a neutrophil suspension in the presence of a near-null magnetic field produced using a system of magnetic shields (a residual constant magnetic field not greater than 20 nT) results in a considerable decrease in the intensity of neutrophil lucigenin-dependent chemiluminescence. The addition of the NADPH oxidase inhibitor diphenyliodonium to the incubation medium reduced the chemiluminescence intensity in both the experimental and the control samples (geomagnetic field). It should be noted that the differences observed between the groups, which were caused by the exposure to a near-null magnetic field, are almost the same both at lower (2.5, 5, and 10 μM) and higher (50 and 100 μM) diphenyliodonium concentrations. In contrast, the addition of 2,4-dinitrophenol, an uncoupler of oxidative phosphorylation in mitochondria, in concentrations starting from 5 μM and up to 200 μM almost completely eliminated the difference between the control and experimental samples, which was observed at low inhibitor concentrations, or in its absence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. H. Zhang, Z. Zhang, W. Mo, et al., Prot. Cell 8 (7), 527 (2017).

    Article  Google Scholar 

  2. C. F. Martino and P. R. Castello, PLoS One 6 (8), e22753 (2011).

    Article  ADS  Google Scholar 

  3. P. Politanski, E. Rajkowska, M. Brodecki, et al., Bioelectromagnetics 34, 333 (2013).

    Article  Google Scholar 

  4. V. N. Binhi and F. S. Prato, PLoS One 12 (6), e0179340 (2017).

    Article  Google Scholar 

  5. V. V. Novikov, E. V. Yablokova, and E. E. Fesenko, Biophysics (Moscow) 63 (3), 365 (2018).

    Article  Google Scholar 

  6. V. V. Novikov, E. V. Yablokova, E. R. Valeeva, and E. E. Fesenko, Biophysics (Moscow) 64 (4), 571 (2019).

    Article  Google Scholar 

  7. V. V. Novikov, E. V. Yablokova, I. A. Shaev, and E. E. Fesenko Biophysics (Moscow) 65 (3), 524 (2020).

  8. J. P. Crow, Nitric Oxide Biol. Chem. 1 (2), 145 (1997).

    Google Scholar 

  9. S. L. Hempel, G. R. Buettner, Y. Q. O’Malley, et al., Free Radic. Biol. Med. 27 (1–2), 146 (1999).

  10. G. Bartosz, Clin. Chim. Acta 368, 53 (2006).

    Article  Google Scholar 

  11. T. B. Aasen, B. Bolann, J. Glette, et al., Scand. J. Clin. Lab. Invest. 47, 673 (1987).

    Article  Google Scholar 

  12. A. A. Dzhatdoeva, E. V. Proskurnina, A. M. Nesterova, et al., Biol. Membrany 34 (6), 116 (2017).

    Google Scholar 

  13. A. R. Cross and O. T. Jones, Biochem. J. 237, 111 (1986).

    Article  Google Scholar 

  14. Y. Li and M. A. Trush, Biochim. Biophys. Acta 253, 295 (1998).

    Google Scholar 

  15. S. Matsuyama, J. L. Lopis, Q. L. Deveraux, et al., Nat. Cell. Biol. 2, 318 (2000).

    Article  Google Scholar 

  16. M. M. El-Guindy, A. C. Neder, and C. B. Gomes, Cell Mol Biol. 27 (5), 399–402 (1981).

    Google Scholar 

  17. V. V. Novikov, E. V. Yablokova, and E. E. Fesenko, Biophysics (Moscow) 65 (1), 82 (2020).

    Article  Google Scholar 

  18. V. V. Novikov, I. M. Sheiman, and E. E. Fesenko, Biophysics (Moscow) 52 (5), 498 (2007).

    Article  Google Scholar 

  19. V. V. Novikov, I. M. Sheiman, and E. E. Fesenko, Bioelectromagnetics 29, 387 (2008).

    Article  Google Scholar 

  20. S. W. Edwards, Biochemistry and Physiology of the Neutrophil (Cambridge Univ. Press, New York, 1994).

    Book  Google Scholar 

  21. M. L. Karnovsky, Semin. Hematol. 5, 156 (1968).

    Google Scholar 

  22. S. W. Edwards, M. B. Hallett, and A. K. Campbell, Biochem. J. 217, 851 (1984).

    Article  Google Scholar 

  23. A. W. Segal and A. Abo, Trends Biochem. Sci. 18, 43 (1993).

    Article  Google Scholar 

  24. J. G. Pryde, A. Walker, A. G. Rossi, et al., J. Biol. Chem. 275, 33574 (2000).

    Article  Google Scholar 

  25. G. Fossati, D. A. Moulding, D. G. Spiller, et al., J. Immunol. 170, 1964 (2003).

    Article  Google Scholar 

  26. A. Panday, M. K. Sahoo, D. Osorio, and S. Batra, Cell Mol. Immunol. 12, 5 (2015).

    Article  Google Scholar 

  27. V. Kozjak-Pavlovic, Cell Tissue Res. 367 (1), 83 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Novikov.

Ethics declarations

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest. Authors declare no conflict of interest.

Additional information

Translated by E. Martynova

Abbreviations: ROS, reactive oxygen species; MF, magnetic field; SAR, superoxide anion radical.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, V.V., Yablokova, E.V., Shaev, I.A. et al. Decreased Production of the Superoxide Anion Radical in Neutrophils Exposed to a Near-Null Magnetic Field. BIOPHYSICS 65, 625–630 (2020). https://doi.org/10.1134/S0006350920040120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920040120

Navigation