Skip to main content
Log in

The Properties of Ion Channels in Lipid Membranes Modified by the Aromatic Antibiotic Levorin А2

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

It has been shown that the main components of levorin A, that is, A0, A1, A2, or A3, that contain an aromatic group increase the permeability of membranes in the series A3 > A2 > A1 > A0 when they are on the same side of the membrane. All levorin components have cationic selectivity. The most studied levorin, А2, promotes the almost ideal permeability of membranes to potassium ions. The membrane potential for a ten-fold change in the KCl concentration gradient is 56 ± 2 mV. It has been shown that the injection of the same concentration of levorin А2 into one side of the membrane and then, after achieving the typical membrane permeability, into the other side of the membrane generates a two-fold increase in the total membrane permeability. This means that independent levorin-induced conductive semi-pores are formed on each side of the membrane. It has been found that the injection of levorin А2 only into one side of the membrane enhances the membrane permeability to monosaccharides and other neutral molecules. The presence of levorin А2 in cholesterol-, ergosterol-, and stigmasterol-containing phospholipid membranes has been shown to lead to the single-channel conductivity of typical ion channels of 0.2–0.5 pS. The properties of these channels have been studied. The levorin channels exist in two states, open and closed. Most of the time, the channel remains in the open state in the KBr solution. In solutions of different salts of the same concentration, the conductivity value of the levorin channels is approximately the same (0.4–0.5 pS). An increase in the dimethyl sulfoxide concentration in aqueous solutions facilitates the transition of polyene antibiotic molecules from dispersed to monomolecular form. The molecules of polyene antibiotics in the associated form exhibit high membrane activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kh. M. Kasumov, Structure and Membrane Function of Polyene Macrolide Antibiotics (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  2. S. B. Zotchev, Curr. Med. Chem. 10, 211 (2003).

    Article  Google Scholar 

  3. K. C. Gray, D. S. Palacios, I. Dailey, et al., Proc. Natl. Acad. Sci. U. S. A. 109, 2234 (2012).

    Article  ADS  Google Scholar 

  4. E. Grela, A. Zdybicka-Barabas, B. Pawlikowska-Pawlega, et al., Sci. Rep. 9 (1), 17029 (2019).

    Article  ADS  Google Scholar 

  5. Y. Nakagawa, Y. Umegawa, T. Takano, et al., Biochemistry 53 (19), 3088 (2014).

    Article  Google Scholar 

  6. E. Borowski, Farmaco 55, 206 (2000).

    Article  Google Scholar 

  7. E. Borowski, M. Malyshkina, S. Soloviev, and T. Ziminski, Chemotherapia 10, 178 (1966).

    Google Scholar 

  8. A. I. Filipova and Yu. D. Shenin, Antibiotiki 19 (1), 32 (1974).

    Google Scholar 

  9. P. Szczeblewski, T. Laskowski, B. Kubacki, et al., Sci. Rep. 7, 40158 (2017).

    Article  ADS  Google Scholar 

  10. J. Zielinski, J. Gumieniak, J. Golik, et al., in Proc. Int. Symp. on Antibiotics (Weimar, GDR, 1979), B16.

  11. J. Zielinski, H. Borowy-Borowski, J. Golik, et al., Tetrahedron Lett. 20 (20), 1791 (1979).

    Article  Google Scholar 

  12. N. Shvinka, Proc. Latv. Acad. Sci. 56, 57 (2001).

    Google Scholar 

  13. Zh.-W. Yu and P. J. Quinn, Biosci. Rep. 14, 259 (1994).

    Article  Google Scholar 

  14. V. V. Zenin, Extended Anstract of Candidate’s Dissertation in Biology (Leningrad, 1979).

  15. V. Kh. Ibragimova, D. I. Aliev, and I. N. Alieva, Biophysics (Moscow) 47 (5), 774 (2002).

    Google Scholar 

  16. V. Ibragimova, I. Alieva, Kh. Kasumov, et al., Biochim. Biophys. Acta 1758, 29 (2006).

    Article  Google Scholar 

  17. N. Shvinka and G. Caffner, Biophys. J. 67, 143 (1994).

    Article  ADS  Google Scholar 

  18. N. Shvinka and G. Caffner, Eur. Biophys. J. 24, 23 (1995).

    Article  Google Scholar 

  19. N. E. Schwinka and G. Kafner, Biol. Membrany 6, 1216 (1989).

    Google Scholar 

  20. S. C. Hartsel, S. K. Benz, W. Ayenew and J. Bolard, Eur. Biophys. J. 23, 125 (1994).

    Article  Google Scholar 

  21. A. A. Samedova, T. P. Tagi-zade, and Kh. M. Kasumov, Russ. J. Bioorg. Chem. 44 (3), 337 (2018

    Article  Google Scholar 

  22. J. F. Aparicio, P. Caffrey, J. A. Gil, and S. B. Zotchev, Appl. Microbiol. Biotechnol. 61, 179 (2003).

    Article  Google Scholar 

  23. M. N. Preobrazhenskaya, E. N. Olsufyeva, S. E. Solovieva, et al., J. Med. Chem. 52, 189 (2009).

    Article  Google Scholar 

  24. D. S. Palacios, L. Dailey, D. M. Siebert, et al., Proc. Natl. Acad. Sci. U. S. A. 108 (17), 6733 (2011).

    Article  ADS  Google Scholar 

  25. W. I. Gruszecki, M . Gagoś, and M Hereć, J. Photochem. Photobiol. 69, 49 (2003).

    Article  Google Scholar 

  26. J. Starzyk, M. Gruszecki, K. Tutaj, et al., J. Phys. Chem. 118 (48), 13821 (2014).

    Article  Google Scholar 

  27. W. Grudzinski, J. Sagan, R. Welc, et al., Sci. Rep. 13 (6), 32780 (2016).

    Article  ADS  Google Scholar 

  28. E. Grela, M. Wieczor, R. Luchowski, et al., Mol. Pharm. 15 (9), 4202 (2018).

    Article  Google Scholar 

  29. J. Mazerski and E. Borowski, Biophys. Chem. 57, 205 (1996).

    Article  Google Scholar 

  30. S. A. F. El-Sufi, Extended Anstract of Candidate’s Dissertation in Biology (Tashkent, 1992).

Download references

Funding

This work was supported by grant no. EIF-BGM-3- BRFTF-2+/2017-15/12 from the Foundation for Science Development under the President of the Republic of Azerbaijan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. M. Kasumov.

Ethics declarations

CONFLICT OF INTEREST

The authors state that there is no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies with the use of humans and animals as objects of research.

Additional information

Translated by A.S. Levina

Abbreviations: PA, polyene antibiotics; BLM, bilayer lipid membranes; DMSO, dimethyl sulfoxide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghi-zada, T.P., Kasumov, K.M. The Properties of Ion Channels in Lipid Membranes Modified by the Aromatic Antibiotic Levorin А2 . BIOPHYSICS 65, 606–613 (2020). https://doi.org/10.1134/S0006350920040235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920040235

Navigation