Skip to main content
Log in

Oxidative Damage to DNA under the Action of an Alternating Magnetic Field

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The content of damaged 8-hydroxy-2-deoxyguanosine nitrogenous bases in the blood DNA of healthy donors and patients with epidermolysis bullosa after exposure to an alternating magnetic field of 550 ± 30 A/m in the frequency range from 3 to 60 Hz in vitro was determined using an enzyme immunoassay. The degree of oxidative DNA damage in epidermolysis bullosa was almost twice as high as in healthy donors. It was shown that there was a significant increase in the level of 8-oxoguanine in the DNA of both groups after the magnetic field treatment, which depended in a complex way on the frequency. The resulting effect is explained by the generation of reactive oxygen species under the influence of a magnetic field and the disruption of DNA repair processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. F. I. Wolf, A. Torsello, B. Tedesco, et al., Biochim. Biophys. Acta 1743, 120 (2005).

    Article  Google Scholar 

  2. C. A. Buckner, A. L. Buckner, S. A. Koren, et al., PLoS One 10 (4), e0124136 (2015). https://doi.org/10.1371/journal.pone.0124136

    Article  Google Scholar 

  3. T. Wang, Y. Nie, S. Zhao, et al., Bioelectromagnetics 32 (6), 443 (2011).

    Article  Google Scholar 

  4. F. Sanie-Jahromi and M. Saadat, Mol. Biol. Rep. 45, 807 (2018). https://doi.org/10.1007/s11033-018-4223-7

    Article  Google Scholar 

  5. I. Vijayalaxmi and T. J. Prihoda, Int. J. Radiat. Biol. 85, 196 (2009). https://doi.org/10.1080/09553000902748575

    Article  Google Scholar 

  6. R. J. Buldak, R. Polanniak, I. Buldak, et al., Bioelectromagnetics 33, 641 (2012).

    Article  Google Scholar 

  7. E. E. Tekutskaya, M. G. Baryshev, and G. P. Ilchenko, Aviakosm. Ekol. Med. 52 (1), 56 (2018). https://doi.org/10.21687/0233-528X-2018-52-1-56-61

    Article  Google Scholar 

  8. A. K. Dharmadhikari, H. Bharambe, J. A. Dharmadhikari, et al., Phys. Rev. Lett. 112, 138105 (2014).

    Article  ADS  Google Scholar 

  9. V. O. Ponomarev, V. V. Novikov, A. V. Karnaukhov, and O. A. Ponomarev, Biofizika 53 (2), 197 (2008).

    Google Scholar 

  10. . V. Smirnova, S. V. Gudkov, and V. I. Bruskov, 8-Oxoguanine and Its Oxidation Products: Formation in DNA under the Impact of Heat, Uranyl Ions, and g-Radiation (Lambert Acad. Publ., Saarbrucken, 2011)

  11. M. V. Lukina, A. A. Kuznetsova, N. A. Kuznetsov, and O. S. Fedorova, Russ. J. Bioorg. Chem. 43 (1), 1 (2017). https://doi.org/10.7868/S0132342317010055

    Article  Google Scholar 

  12. X. Ba, L. Aguilera-Aguirre, Q. T. Rashid, et al., Int. J. Mol. Sci. 15, 16975 (2014). https://doi.org/10.3390/ijms150916975

    Article  Google Scholar 

  13. A. A. Kubanov, A. E. Karamova, V. I. Al’banova, et al., Vestn. Dermatol. Venerol. 4, 28 (2017). https://doi.org/10.25208/0042-4609-2017-0-4-22-27

    Article  Google Scholar 

  14. E. E. Tekutskaya, M. G. Barishev, and G. P. Ilchenko, Biophysics 60 (6), 913 (2015). https://doi.org/10.1134/S000635091506024X

    Article  Google Scholar 

  15. G. P. Il’chenko, M. G. Baryshev, E. E. Tekutskaya, et al., Measur. Techniques 60 (6), 632 (2017). https://doi.org/10.1007/s11018-017-1247-7

    Article  Google Scholar 

  16. S. V. Gudkov, O. E. Karp, S. A. Garmash, et al., Biophysics (Moscow) 57 (1), 1 (2012).

    Article  Google Scholar 

  17. L. Stryer, Biochemistry (Freeman, New York, 1975; Mir, Moscow, 1985), vol. 3.

  18. V. I. Poltev, V. M. Anisimov, C. Sanchez, et al., Biophysics (Moscow) 61 (2), 217 (2016).

    Article  Google Scholar 

  19. M. D. Frank-Kamenetskii, A. V. Lukashin, and V. V. Anshelevich, J. Biomol. Struct. Dynam. 2, 1005 (1985).

    Article  Google Scholar 

  20. P. Yakovchuk, E. Protozanova, and M. D. Frank-Kamenetskii, Nucleic Acids Res. 34 (2), 564 (2006). https://doi.org/10.1093/nar/gkj454

    Article  Google Scholar 

  21. I. N. Shtarkman, S. V. Gudkov, A. V. Chernikov, and V. I. Bruskov, Biochemistry (Moscow) 73 (4), 470 (2008).

    Article  Google Scholar 

  22. A. A. Krasnovsky and J. B. Kozlov, J. Biomed. Photonics 3 (1), 1 (2017).

    Google Scholar 

  23. A. A. Krasnovsky, N. N. Drozdova, A. V. Ivanov, et al., Biochemistry 68, 963 (2003).

    Google Scholar 

  24. A. A. Krasnovsky, Membrane Cell Biol. 15, 530 (1998).

    Google Scholar 

  25. V. V. Novikov, E. V. Yablokova and E. E. Fesenko, Biophysics (Moscow) 63 (2), 193 (2018).

    Article  Google Scholar 

  26. V. O. Ponomarev and V. V. Novikov, Biophysics (Moscow) 54 (2), 163 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Tekutskaya.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

Laboratory diagnostic tests were performed in accordance with the mandatory compliance with the ethical standards set out in the Declaration of Helsinki of 1975 with amendments of 1983.

Additional information

Translated by E. Puchkov

Abbreviations: MF, magnetic fields; ROS, reactive oxygen species; 8-ОНdG, 8-hydroxy-2-deoxyguanosine; 8-oxoG, 8‑oxoguanine; EB, epidermolysis bullosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekutskaya, E.E., Baryshev, M.G., Gusaruk, L.R. et al. Oxidative Damage to DNA under the Action of an Alternating Magnetic Field. BIOPHYSICS 65, 564–568 (2020). https://doi.org/10.1134/S0006350920040247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920040247

Navigation