Skip to main content
Log in

Isogeometric Least-Squares Collocation Method with Consistency and Convergence Analysis

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper presents the isogeometric least-squares collocation (IGA-L) method, which determines the numerical solution by making the approximate differential operator fit the real differential operator in a least-squares sense. The number of collocation points employed in IGA-L can be larger than that of the unknowns. Theoretical analysis and numerical examples presented in this paper show the superiority of IGA-L over state-of-the-art collocation methods. First, a small increase in the number of collocation points in IGA-L leads to a large improvement in the accuracy of its numerical solution. Second, IGA-L method is more flexible and more stable, because the number of collocation points in IGA-L is variable. Third, IGA-L is convergent in some cases of singular parameterization. Moreover, the consistency and convergence analysis are also developed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hughes T J R, Cottrell J A, and Bazilevs Y, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 2005, 194 (39–41): 4135–4195.

    Article  MathSciNet  MATH  Google Scholar 

  2. Auricchio F, Beirão da V L, Hughes T J R, et al., Isogeometric collocation methods, Mathematical Models and Methods in Applied Sciences, 2010, 20(11): 2075–2107.

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang X, Liu X, Song K, et al., Least-squares collocation meshless method, International Journal for Numerical Methods in Engineering, 2001, 51(9): 1089–1100.

    Article  MathSciNet  MATH  Google Scholar 

  4. Jiang B, Least-squares meshfree collocation method, International Journal of Computational Methods, 2012, 9(2): 1240031.

    Article  MathSciNet  MATH  Google Scholar 

  5. Kim D W and Kim Y, Point collocation methods using the fast moving least-square reproducing kernel approximation, International Journal for Numerical Methods in Engineering, 2003, 56(10): 1445–1464.

    Article  MathSciNet  MATH  Google Scholar 

  6. Dai Y, Wu X, and Tao W, Weighted least-squares collocation method wlscm) for 2-d and 3-d heat conduction problems in irregular domains, Numerical Heat Transfer, Part B: Fundamentals, 2011, 59(6): 473–494.

    Article  Google Scholar 

  7. Afshar M H, Lashckarbolok M, and Shobeyri G, Collocated discrete least squares meshless cdlsm) method for the solution of transient and steady-state hyperbolic problems, International Journal for Numerical Methods in Fluids, 2009, 60(10): 1055–1078.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernard B T K, Liu G, and Lu C, A least-square radial point collocation method for adaptive analysis in linear elasticity, Engineering Analysis with Boundary Elements, 2008, 32(6): 440–460.

    Article  MATH  Google Scholar 

  9. Rabczuk T, Belytschko T, and Xiao S, Stable particle methods based on lagrangian kernels, Computer Methods in Applied Mechanics and Engineering, 2004, 193(12-14): 1035–1063.

    Article  MathSciNet  MATH  Google Scholar 

  10. Rabczuk T and Belytschko T, Cracking particles: A simplified meshfree method for arbitrary evolving cracks, International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343.

    Article  MATH  Google Scholar 

  11. Rabczuk T and Belytschko T, A three-dimensional large deformation meshfree method for arbitrary evolving cracks, Computer Methods in Applied Mechanics and Engineering, 2007, 196(29-30): 2777–2799.

    Article  MathSciNet  MATH  Google Scholar 

  12. Piegl L A and Tiller W, The NURBS Book, Springer-Verlag, Berlin, 1997.

    Book  MATH  Google Scholar 

  13. De Boor C, A Practical Guide to Splines, Volume 27, Springer–Verlag, Berlin, 2001.

    Google Scholar 

  14. Zhang Y, Wang W, and Hughes T J R, Solid T-spline construction from boundary representations for genus-zero geometry, Computer Methods in Applied Mechanics and Engineering, 2012, 249-252: 185–197.

    Article  MathSciNet  MATH  Google Scholar 

  15. Cohen E, Martin T, Kirby R M, et al., Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8): 334–356.

    Article  MathSciNet  MATH  Google Scholar 

  16. Bazilevs Y, Calo V M, Cottrell J A, et al., Isogeometric analysis using T-splines, Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8): 229–263.

    Article  MathSciNet  MATH  Google Scholar 

  17. Dörfel M R, Jüttler B, and Simeon B, Adaptive isogeometric analysis by local h-refinement with T-splines, Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8): 264–275.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim H J, Seo Y D, and Youn S K, Isogeometric analysis for trimmed CAD surfaces, Computer Methods in Applied Mechanics and Engineering, 2009, 198(37-40): 2982–2995.

    Article  MATH  Google Scholar 

  19. Burkhart D, Hamann B, and Umlauf G, Iso-geometric finite element analysis based on Catmull- Clark subdivision solids, Computer Graphics Forum, 2010, 29: 1575–1584.

    Article  Google Scholar 

  20. Speleers H, Manni C, Pelosi F, et al., Isogeometric analysis with Powell-Sabin splines for advectiondiffusion-reaction problems, Computer Methods in Applied Mechanics and Engineering, 2012, 221-222: 132–148.

    Article  MATH  Google Scholar 

  21. Jaxon N and Qian X, Isogeometric analysis on triangulations, Computer-Aided Design, 2014, 46: 45–57.

    Article  MathSciNet  Google Scholar 

  22. Auricchio F, Beirão da V L, Buffa A, et al., A fully “locking-free” isogeometric approach for plane linear elasticity problems: A stream function formulation, Computer Methods in Applied Mechanics and Engineering, 2007, 197(1-4): 160–172.

    Article  MathSciNet  MATH  Google Scholar 

  23. Elguedj T, Bazilevs Y, Calo V M, et al., B and F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. Methods Appl. Mech. Engrg,, 2008, 197(33-40): 2732–2762.

    Article  MATH  Google Scholar 

  24. Cottrell J A, Reali A, Bazilevs Y, et al., Isogeometric analysis of structural vibrations, Computer Methods in Applied Mechanics and Engineering, 2006, 195(41-43): 5257–5296.

    Article  MathSciNet  MATH  Google Scholar 

  25. Hughes T J R, Reali A, and Sangalli G, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with kmethod NURBS, Computer Methods in Applied Mechanics and Engineering, 2008, 197(49-50): 4104–4124.

    Article  MathSciNet  MATH  Google Scholar 

  26. Wall W A, Frenzel M A, and Cyron C, Isogeometric structural shape optimization, Computer Methods in Applied Mechanics and Engineering, 2008, 197(33-40): 2976–2988.

    Article  MathSciNet  MATH  Google Scholar 

  27. Bazilevs Y, Calo V M, Hughes T J R, et al., Isogeometric fluid-structure interaction: Theory, algorithms, and computations, Computational Mechanics, 2008, 43(1): 3–37.

    MathSciNet  MATH  Google Scholar 

  28. Bazilevs Y, Calo V M, Zhang Y, et al., Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Computational Mechanics, 2006, 38(4): 310–322.

    Article  MathSciNet  MATH  Google Scholar 

  29. Bazilevs Y, Gohean J R, Hughes T J R, et al., Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Computer Methods in Applied Mechanics and Engineering, 2009, 198(45-46): 3534–3550.

    Article  MathSciNet  MATH  Google Scholar 

  30. Bazilevs Y, Beirão da V L, Cottrell J A, et al., Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes, Mathematical Models and Methods in Applied Sciences, 2006, 16(7): 1031–1090.

    Article  MathSciNet  MATH  Google Scholar 

  31. Cottrell J A, Hughes T J R, and Reali A, Studies of refinement and continuity in isogeometric structural analysis, Computer Methods in Applied Mechanics and Engineering, 2007, 196(41-44): 4160–4183.

    Article  MATH  Google Scholar 

  32. Hughes T J R, Reali A, and Sangalli G, Efficient quadrature for NURBS-based isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8): 301–313.

    Article  MathSciNet  MATH  Google Scholar 

  33. Heinrich C, Jüttler B, Pilgerstorfer E, et al., Swept volume parameterization for isogeometric analysis, Mathematics of Surfaces XIII, Springer Berlin Heidelberg, 2009, 19–44.

    Google Scholar 

  34. Xu G, Mourrain B, Duvigneau R, et al., Optimal analysis-aware parameterization of computational domain in 3d isogeometric analysis, Computer-Aided Design, 2013, 45(4): 812–821.

    Article  MathSciNet  Google Scholar 

  35. Donatelli M, Garoni C, Manni C, et al., Robust and optimal multi-iterative techniques for IGA Galerkin linear systems, Computer Methods in Applied Mechanics and Engineering, 2015, 284: 230–264.

    Article  MathSciNet  MATH  Google Scholar 

  36. Donatelli M, Garoni C, Manni C, et al., Robust and optimal multi-iterative techniques for IGA collocation linear systems, Computer Methods in Applied Mechanics and Engineering, 2015, 284: 1120–1146.

    Article  MathSciNet  MATH  Google Scholar 

  37. Cottrell J A, Hughes T J R, and Bazilevs Y, Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, Hoboken, 2009.

  38. Schillinger D, Evans J A, Reali A, et al., Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Computer Methods in Applied Mechanics and Engineering, 2013, 267: 170–232.

    Article  MathSciNet  MATH  Google Scholar 

  39. Lin H, Hu Q, and Xiong Y, Consistency and convergence properties of the isogeometric collocation method, Computer Methods in Applied Mechanics and Engineering, 2013, 267: 471–486.

    Article  MathSciNet  MATH  Google Scholar 

  40. Anitescu C, Jia Y, Zhang Y J, et al., An isogeometric collocation method using superconvergent points, Computer Methods in Applied Mechanics and Engineering, 2015, 284: 1073–1097.

    Article  MathSciNet  MATH  Google Scholar 

  41. Montardini M, Sangalli G, and Tamellini L, Optimal-order isogeometric collocation at Galerkin superconvergent points, Computer Methods in Applied Mechanics and Engineering, 2016, 316: 741–757.

    Article  MathSciNet  MATH  Google Scholar 

  42. Gomez H and Lorenzis L D, The variational collocation method, Computer Methods in Applied Mechanics and Engineering, 2016, 309: 152–181.

    Article  MathSciNet  MATH  Google Scholar 

  43. Casquero H, Liu L, Zhang Y, et al., Isogeometric collocation using analysis-suitable T-splines of arbitrary degree, Computer Methods in Applied Mechanics and Engineering, 2016, 301: 164–186.

    Article  MathSciNet  MATH  Google Scholar 

  44. Auricchio F, Beirão da V L, Hughes T J R, et al., Isogeometric collocation for elastostatics and explicit dynamics, Computer Methods in Applied Mechanics and Engineering, 2012, 249-252: 2–14.

    Article  MathSciNet  MATH  Google Scholar 

  45. Beirão da V L, Lovadina C, and Reali A, Avoiding shear locking for the timoshenko beam problem via isogeometric collocation methods, Computer Methods in Applied Mechanics and Engineering, 2012, 241-244: 38–51.

    Article  MathSciNet  MATH  Google Scholar 

  46. Auricchio F, Beirão da V L, Kiendl J, et al., Locking-free isogeometric collocation methods for spatial timoshenko rods, Computer Methods in Applied Mechanics and Engineering, 2013, 263(15): 113–126.

    Article  MathSciNet  MATH  Google Scholar 

  47. Balduzzi G, Morganti S, Auricchio F, et al., Non-prismatic timoshenko-like beam model: Numerical solution via isogeometric collocation, Computers and Mathematics with Applications, 2017, 74(7): 1531–1541.

    Article  MathSciNet  MATH  Google Scholar 

  48. Pavan G S, Nan K, and Rao J, Bending analysis of laminated composite plates using isogeometric collocation method, Composite Structures, 2017, 176: 715–728.

    Article  Google Scholar 

  49. Golub G H and van Loan C F, Matrix Computations, Johns Hopkins University Press, Baltimore, 1996.

    MATH  Google Scholar 

  50. Shadrin A Y, The L8-norm of the L2-spline projector is bounded independently of the knot sequence: A proof of De Boor's conjecture, Acta Mathematica, 2001, 187(1): 59–137.

    Article  MathSciNet  MATH  Google Scholar 

  51. Light W A and Cheney E W, Approximation Theory in Tensor Product Spaces, Springer-Verlag, Berlin, 1985.

    Book  MATH  Google Scholar 

  52. Passenbrunner M and Prochno J, On almost everywhere convergence of tensor product spline projections, Michigan Mathematical Journal, 2019, 68(1): 3–17.

    Article  MathSciNet  MATH  Google Scholar 

  53. Solin P, Partial Differential Equations and the Finite Element Method, Wiley-Interscience, Hoboken, 2006.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Lin.

Additional information

This work is supported by the National Natural Science Foundation of China under Grant No. 61872316, and the Natural Science Foundation of Zhejiang Province under Grant No. LY19F020004.

This paper was recommended for publication by Editor-in-Chief GAO Xiao-Shan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Xiong, Y., Wang, X. et al. Isogeometric Least-Squares Collocation Method with Consistency and Convergence Analysis. J Syst Sci Complex 33, 1656–1693 (2020). https://doi.org/10.1007/s11424-020-9052-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-9052-9

Keywords

Navigation