Skip to main content
Log in

Robust Adaptive Multi-Switching Synchronization of Multiple Different Orders Unknown Chaotic Systems

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Multi-switching synchronization (MSS) of multiple different orders unknown chaotic (UC) systems confines hacking in the digital transmission process. Similarly, the suppression of undesirable chattering increases synchronization performance. This paper proposes a new robust synchronization control (RASC) technique and discusses the MSS of multiple different orders UC systems. This controller accomplishes (i) quick convergence, (ii) reduces the transient oscillations, and (iii) the rate of convergence decreases in the vicinity of the origin that causes the suppression of chattering. Analysis based on the Lyapunov direct method assures this convergence behavior with any positive values of the feedback gains. This work also provides parameters updated law that estimates the true values of unknown parameters. Numerical examples of five UC systems different orders are simulated. The computer based graphical results validate the efficiency and performance of the proposed RASC technique and the synchronization strategy when compare to peer works. In the simulation, the proposed synchronization strategy successfully recovers an encrypted received image on a communication channel. The article suggests some future research problems to extend the use of the proposed work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pecora L and Carroll T, Synchronization in chaotic oscillators, Phys. Rev. Lett., 1991, 64: 821–823.

    Article  MATH  Google Scholar 

  2. Singh R, Singh V, and Ramaswamy R, Stochastic synchronization of circadian rhythms, J. Sys. Sci. Comp., 2010, 23(5): 978–988.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bondarenko V, Information processing, memories, and synchronization in chaotic neural network with the time delay, Complexity, 2005, 11(2): 39–52.

    Article  MathSciNet  Google Scholar 

  4. Volos C, Kyprianids M, and Stouboulos N, Image encryption process based on chaotic synchronpization phenomena, Signal Proc., 2013, 93(5): 1328–1370.

    Article  Google Scholar 

  5. Sun S, Si L, Shang Z, et al., Finite-time synchronization of chaotic PMSM systems for secure communication and parameters identification, Optik, 2018, 57: 43–55.

    Article  Google Scholar 

  6. Li C and Liu G, Data-driven leader-follower output synchronization for networked non-linear multi-agent systems with switching topology and time-varying delays, J. Sys. Sci. Comp., 2018, 31(3): 87–102.

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang D, Che W, Yu H, et al., Adaptive pinning synchronization of complex networks with negative weights and its application in traffic road network, Int. J. Cont. Autom. Sys., 2018, 16(2): 782–790.

    Article  Google Scholar 

  8. Zhang Q and Lu J, Exponentially adaptive synchronization of an uncertain delayed dynamical network, J. Sys. Sci. Comp., 2011, 24(207): doi.https://doi.org/10.1007/s11424-011-8304-0.

    Google Scholar 

  9. Aghababa M P, A general nonlinear adaptive control scheme for the finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs, Nonlinear Dyn., 2012, 69(4): 1903–1914.

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang X, Zhu H, and Yao H, Analysis and adaptive synchronization for a new chaotic system, Nonlinear Dyn., 2012, 18(4): 467–477.

    MathSciNet  MATH  Google Scholar 

  11. Othman A, Noorani M S M, and Alsawalha M M, Adaptive dual synchronization of chaotic and hyperchaotic systems with fully uncertain parameters, Optik, 2016, 127(19): 7852–7864.

    Article  Google Scholar 

  12. Ahmad I, Saaban A, and Ibrahim A, Controller parameter optimization for the robust synchronization of chaotic systems with known and unknown parameters, J. Uncer. Anal. Appl., 2016, 5(6): 2–17.

    Google Scholar 

  13. Zarefard M and Effati S, Adaptive synchronization between two non-identical BAM neural networks with unknown parameters and time varying delay, Int. J. Cont. Autom. Sys., 2017, 15(4): 1877–1887.

    Article  Google Scholar 

  14. Huang C F, Cheng K H, and Yan J J, Robust chaos synchronization of four-dimensional energy resource systems subject to unmatched uncertainties, Comm. Non. Sci. Num. Simul., 2013, 14(6): 2784–2792.

    Article  Google Scholar 

  15. Naderi B, Kheiri H, Heydari A, et al., Optimal synchronization of complex chaotic t-systems and its application in secure communication, J. Cont. Auto. Elect. Sys., 2016, 27(4): 379–390.

    Article  Google Scholar 

  16. Ahmad I, Shafiq M, and Shahzad M, Global finite-time multi-switching synchronization of externally perturb chaotic oscillators, J. Circuits. Syst. Signal. Process., 2018, 37(12): 5253–5278.

    Article  Google Scholar 

  17. Ahmad I, Saaban A, Ibrahim A, et al., The synchronization of chaotic systems with different dimensions by a robust generalized active control, Optik, 2016, 127(11): 4859–4871.

    Article  Google Scholar 

  18. Zhang R, Zeng D, and Zhong S, The synchronization of chaotic systems with different dimensions by a robust generalized active control, J. Franklin Instit., 2017, 354(12): 4930–4954.

    Article  MATH  Google Scholar 

  19. Xu W, Yang X, and Sun Z, Full and reduced-order synchronizations of a class of time-varying systems containing uncertainties, Nonlinear Dyn., 2017, 52(1): 19–25.

    MathSciNet  Google Scholar 

  20. Alsawalha M M and Noorani M S M, Adaptive increasing-order synchronization and antisynchronization of chaotic systems with fully uncertain parameters, Chinese Phys. Lett., 2011, 28(11): 110507–1–3.

    Article  Google Scholar 

  21. Alsawalha M M and Noorani M S M, Chaos reduced-order anti-synchronization of chaotic systems with fully unknown parameters, Comm. Non. Sci. Num. Simul., 2012, 17(4): 1908–1920.

    Article  MathSciNet  MATH  Google Scholar 

  22. Ahmad I, Shafiq M, Saaban A, et al., Robust finite-time global synchronization of chaotic systems with different orders, Optik, 2016, 127(19): 8172–8185.

    Article  Google Scholar 

  23. Jang B, Lee S, and Kwon K, Perceptual encryption with compression for secure vector map data processing, Digital Sig. Proc., 2014, 25(1): 224–243.

    Article  Google Scholar 

  24. Runzi L, Yinglan W, and Shucheng D, Combination synchronization of three classic chaotic systems using active backstepping design, Chaos, 2011, 21(4): 043114–19.

    Article  MATH  Google Scholar 

  25. Sun J, Shen Y, Yin Q, et al., Compound synchronization of four memristor chaotic oscillator systems and secure communication, Chaos, 2013, 23(1): 013140–1–6.

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun J, Shen Y, Yin Q, et al., Combination-combination synchronization among four identical or different chaotic systems, Nonlinear Dyn., 2013, 73(3): 1211–1222.

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun J, Jiang S, Cui G, et al., Dual combination synchronization of six chaotic systems, J. Comm. Nonlinear. Dyn., 2016, 11(3): 034501–01–05.

    Article  Google Scholar 

  28. Vincent U E, Saseyi A, and McClintock P, Multi switching combination synchronization of chaotic systems, Nonlinear Dyn., 2016, 80(1–2): 845–854.

    MathSciNet  MATH  Google Scholar 

  29. Ojo K, Njah A, and Olusola I, Compound-combination synchronization of chaos in identical and different orders chaotic systems, Archives Con. Sci., 2015, 25(4): 463–490.

    MathSciNet  MATH  Google Scholar 

  30. Khan A, Khattar D, and Prajapati N, Dual combination-combination multi switching synchronization of eight chaotic systems, Chinese J. Phys., 2017, 55(4): 1209–1218.

    Article  Google Scholar 

  31. Khan A, Khattar D, and Prajapati N, Reduced order multi switching hybrid synchronization of chaotic systems, CJ. Math. Comput. Sci., 2017, 7(2): 414–429.

    Google Scholar 

  32. Chen X, Cao J, Park J, et al., Finite-time multi-switching synchronization behavior for multiple chaotic systems with network transmission mode, J. Franklin Instit., 2018, doi.https://doi.org/10.1016/j.jfranklin.2018.01.027.

    Google Scholar 

  33. Ahmad I, Shafiq M, and Alsawalha M M, Globally exponential multiswitching-combination synchronization control of chaotic systems for secure communications, Chinese J. Phys., 2018, 56(3): 974–987.

    Article  Google Scholar 

  34. Hung Y and Hu C, Chaotic communication via temporal transfer entropy, Physics Rev. Lett., 2008, 101(24): 244102–1–4.

    Article  Google Scholar 

  35. Cuomo K, Oppenheim A, and Strogatz A, Synchronization of Lorenz based chaotic circuits with applications to communications, IEEE Tran. Circ. Sys.-II, 1993, 40(10): 626–633.

    Article  Google Scholar 

  36. Dedieu H, Kennedy M, and Hasler M, Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chua circuits, IEEE Tran. Circ. Sys.-II, 1993, 40(10): 634–642.

    Article  Google Scholar 

  37. Yang T and Chua L, Secure communication via parameter modulation, IEEE Tran. Circ. Sys.-I, 1996, 43(9): 817–819.

    Article  Google Scholar 

  38. Murali K, Yu H, Varadan V, et al., Secure communication using a chaos based signal encryption scheme, IEEE Tran. Cont. Elect., 2001, 47(4): 709–714.

    Article  Google Scholar 

  39. Yu W, High gain observer for chaotic synchronization and secure communication, Int. J. Comm. Sys., 2005, 18(5): 487–500.

    Article  Google Scholar 

  40. Yeh J and Wu K, A simple method to synchronize chaotic systems and its application to secure communications, Math. Comput., 2008, 47(9–10): 894–902.

    MathSciNet  MATH  Google Scholar 

  41. Njah A, Synchronization via active control of parametrically and externally excited f6 Van der Pol and Duffing oscillators and application to secure communications, J. Vibration Cont., 2011, 17(4): 493–504.

    Article  MathSciNet  MATH  Google Scholar 

  42. Yau A, Pu Y, and Li S, Application of a chaotic synchronization system to secure communication, Inform. Tech. Cont., 2012, 41(3): 274–282.

    Google Scholar 

  43. Kwon O, Park J, and Lee S, Secure communication based on chaotic synchronization via interval time-varying delay feedback control, Inform. Tech. Cont., 2011, 63(1–2): 239252.

    MathSciNet  Google Scholar 

  44. Naderi B and Kheiri H, Exponential synchronization of chaotic system and application in secure communication, Optik, 2016, 127(5): 2407–2412.

    Article  Google Scholar 

  45. Yu F and Wang C, Secure communication based on a four-wing chaotic system subject to disturbance inputs, Optik, 2014, 125(20): 5920–5925.

    Article  Google Scholar 

  46. Sun J, Shen Y, Yin Q, et al., Compound synchronization of four memristor chaotic systems and secure communication, Chaos, 2013, 23(1): 013140–013149.

    Article  MathSciNet  MATH  Google Scholar 

  47. Khalil H K, Non-Linear Systems, Prentice-Hall, New York, 2002.

    Google Scholar 

  48. Karim M and Wong K, Universal data embedding in encrypted domain, Signal Proc., 2014, 94: 174–182.

    Article  Google Scholar 

  49. Stenflo L, Generalized Lorenz equations for acoustic-gravity waves in the atmosphere, Physica Scr., 2014, 53(1): 83–84.

    Article  Google Scholar 

  50. Sudher K and Sabir M, Adaptive modified function projective synchronization between hyperchaotic Lorenz and hyperchaotic Lu system with uncertain parameters, Phys. Lett. A, 2009, 373(41): 3743–3748.

    Article  MathSciNet  MATH  Google Scholar 

  51. Shimizu T and Morioka N, On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model, Phys. Lett. A, 1980, 76(3–4): 201–204.

    Article  MathSciNet  Google Scholar 

  52. Genesio R and Tesi A, A harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems, Automatica, 1992, 28(3): 531–548.

    Article  MATH  Google Scholar 

  53. Ying-Ying M and Yun-Gang L, Barbalat's lemma and its application in analysis of system stability, J. Shandong Univ. Tech., 2007, 37(1): 51–55.

    Google Scholar 

  54. Lee H and Utkin V, Chattering suppression methods in sliding mode control systems, Annual Rev. Cont., 2007, 31(31): 179–188.

    Article  Google Scholar 

  55. Ambusaidi M, He X, Nanda P, et al., Building an intrusion detection system using a filter-based feature selection algorithm, IEEE Trans. Comp., 2016, 65(10): 2986–2998.

    Article  MathSciNet  MATH  Google Scholar 

  56. Louvieris P, Clewley N, and Liu X, Effects-based feature identification for network intrusion detection, Neurocomputing, 2013, 121: 265–273.

    Article  Google Scholar 

  57. John G, Kohavi R, and Peger K, Irrelevant features and the subset selection problem, Machine Learning, Proceedings of the 11th International Conference, Rutgers University, New Brunswick, NJ, 1994, 121–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Israr or Mohammed Ambusaidi.

Additional information

This paper was recommended for publication by Editor LIU Guoping.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, S., Israr, A., Ambusaidi, M. et al. Robust Adaptive Multi-Switching Synchronization of Multiple Different Orders Unknown Chaotic Systems. J Syst Sci Complex 33, 1330–1359 (2020). https://doi.org/10.1007/s11424-020-8239-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-8239-4

Keywords

Navigation