Skip to main content
Log in

Longitudinal variability of the equatorial counter electrojet during the solar cycle 24

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Ground and space-based geomagnetic data were used in the investigation of the longitudinal, seasonal and lunar phase dependence of the equatorial counter electrojet (CEJ) occurrence in the Peruvian, Brazilian, African, Indian and Philippine sectors during geomagnetically quiet days from the solar cycle 24 (2008 to 2018). We found that CEJ events occur more frequently during the morning (MCEJ) than in the afternoon (ACEJ). The highest MCEJ and ACEJ occurrence rates were observed for the Brazilian sector. Distinct seasonal dependence was found for each longitudinal sector under investigation. The lunar phase dependence was determined for the first time for the Philippine sector (longitude 125°E), and it was shown to be less pronounced than in the Peruvian, Brazilian and African sectors. We demonstrate that differences in CEJ rates derived from ground-based and satellite data can arise from the longitudinal separation between low-latitude and equatorial stations that are used to determine the signal and its consequent time delay in their sunrise/sunset times at ionospheric heights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alken P. and Maus S., 2007. Spatio-temporal characterization of the equatorial electrojet from CHAMP, Ørsted, and SAC-C satellite magnetic measurements. J. Geophys. Res.-Space Phys., 112, A09305, DOI: https://doi.org/10.1029/2007JA012524.

    Article  Google Scholar 

  • Alken P., Chulliat A. and Maus S., 2013. Longitudinal and seasonal structure of the ionospheric equatorial electric field. J. Geophys. Res.-Space Phys., 118, 1298–1305, DOI: https://doi.org/10.1029/2012JA018314

    Article  Google Scholar 

  • Alken P., Maus S., Vigneron P., Sirol O. and Hulot G., 2013. Swarm SCARF equatorial electric field inversion chain. Earth Planets Space, 65, 1309–1317, DOI: https://doi.org/10.5047/eps.2013.09.008.

    Article  Google Scholar 

  • Alken P., Maus S., Chulliat A., Vigneron P., Sirol O. and Hulot G., 2015. Swarm equatorial electric field chain: First results. Geophys. Res. Lett., 42, 673–680, DOI: https://doi.org/10.1002/2014GL062658.

    Article  Google Scholar 

  • Archana R.K., Chandrasekhar N.P., Arora K. and Nagarajan N., 2018. Constraints on scale lengths of equatorial electrojet and counter electrojet phenomena from the Indian sector. J. Geophys. Res.-Space Phys., 123, 6821–6835, DOI: https://doi.org/10.1029/2018JA025213.

    Article  Google Scholar 

  • Chapman S., 1951. The equatorial electrojet as detected from the abnormal electric current distribution about Huancayo, Peru and elsewhere. Arch. Meteorol. Geophys. Bioklimatol. A, 4, 368–390.

    Article  Google Scholar 

  • Chapman S. and Bartels J., 1940. Geomagnetism. Oxford University Press London, U.K.

    Google Scholar 

  • Chulliat A., Matzka J., Masson A. and Milan S., 2016. Key ground-based and space-based assets to disentangle magnetic field sources in the Earth’s environment. Space Sci. Rev., 206, 123–156, DOI: https://doi.org/10.1007/s11214-016-0291-y.

    Article  Google Scholar 

  • Courtillot V. and Le Mouël J.-L., 2007. The study of Earth’s magnetism (1269–1950): A foundation by Peregrinus and subsequent development of geomagnetism and paleomagnetism. Rev. Geophys., 45, RG3008, DOI: https://doi.org/10.1029/2006RG000198.

    Article  Google Scholar 

  • Doumouya V., Vassal J., Cohen Y., Fambitakoye O. and Menvielle M., 1998. Equatorial electrojet at African longitudes: first results from magnetic measurements. Ann. Geophys., 16, 658–676.

    Article  Google Scholar 

  • Efron B., 1981. Nonparametric estimates of standard error: The jackknife, the bootstrap, and other methods. Biometrika, 68, 589–599.

    Article  Google Scholar 

  • England S.L., Maus S., Immel T.J. and Mende S.B., 2006. Longitudinal variation of the E region electric fields caused by atmospheric tides. Geophys. Res. Lett., 33, L21105, DOI: https://doi.org/10.1029/2006GL027465

    Article  Google Scholar 

  • Forbes J.M., 1981. The equatorial electrojet. Rev. Geophys., 19, 469–504.

    Article  Google Scholar 

  • Friis-Christensen E., Lühr H. and Hulot G., 2006. Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space, 58, 351–358.

    Article  Google Scholar 

  • Friis-Christensen E., Lühr H., Knudsen D. and Haagmans R., 2008. Swarm — An Earth observation mission investigating geospace. Adv. Space Res., 41, 210–216, DOI: https://doi.org/10.1016/j.asr.2006.10.008.

    Article  Google Scholar 

  • Gouin P., 1962. Reversal of the magnetic daily variation at Addis Ababa. Nature, 193, 1145–1146.

    Article  Google Scholar 

  • Gouin P. and Mayaud P.N., 1967. A propos de lexistence possible d’un “contre-electrojet” aux latitudes magnetiques equatoriales. Ann. Géophys., 23, 41–47.

    Google Scholar 

  • INTERMAGNET Operations Committee, 2011. INTERMAGNET Technical Reference Manual V4.5. Natural Resources Canada, Observatory Crescent, Ottawa, Ontario, Canada.

    Google Scholar 

  • Kil H., Oh S.-J., Kelley M.C., Paxton L.J., England S.L., Talaat E., Min K.-W. and Su S.-Y., 2007. Longitudinal structure of the vertical E×B drift and ion density seen from ROCSAT-1. Geophys. Res. Lett., 34, L14110, DOI: https://doi.org/10.1029/2007GL030018.

    Article  Google Scholar 

  • Love J.J., 2009. Missing data and the accuracy of magnetic-observatory hour means. Ann. Geophys., 27, 3601–3610, DOI: https://doi.org/10.5194/angeo-27-3601-2009.

    Article  Google Scholar 

  • Lühr H., Rother M., Hausler K., Alken P. and Maus S., 2008. The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet. J. Geophys. Res.-Space Phys., 113, A08313, DOI: https://doi.org/10.1029/2008JA013064

    Article  Google Scholar 

  • Lühr H. and Manoj C., 2013. The complete spectrum of the equatorial electrojet related to solar tides: CHAMP observations. Ann. Geophys., 31, 1315–1331, DOI: https://doi.org/10.5194/angeo-31-1315-2013.

    Article  Google Scholar 

  • Marriott R.T., Richmond A.D. and Venkateswaran S.V., 1979. The quiet-time equatorial electrojet and counter-electrojet. J. Geomagn. Geoelectr., 31, 311–340, DOI: https://doi.org/10.5636/jgg.31.311.

    Article  Google Scholar 

  • Matzka J., Chulliat A., Mandea M., Finlay C.C. and Qamili E., 2010. Geomagnetic observations for main field studies: From ground to space. Space Sci. Rev., 155, 29–64, DOI: https://doi.org/10.1007/s11214-010-9693-4.

    Article  Google Scholar 

  • Mayaud P.N., 1977. The equatorial counter-electrojet — a review of its geomagnetic aspects. J. Atmos. Terr. Phys., 39, 1055–1070.

    Article  Google Scholar 

  • Morschhauser A., Soares G.B., Haseloff J., Bronkalla O., Protásio J., Pinheiro K. and Matzka J., 2017. The geomagnetic observatory on Tatuoca Island, Brazil: History and recent developments. Geosci. Instrum. Methods Data Syst., 6, 367–376, DOI: https://doi.org/10.5194/gi-6-367-2017.

    Article  Google Scholar 

  • Meeus J., 1998. Astronomical Algorithms, 2nd Edition. Willmann-Bell, Richmond, VA, USA.

    Google Scholar 

  • Onwumechili C.A., 1997. The Equatorial Electrojet. Gordon and Breach Science Publishers The Netherlands.

    Google Scholar 

  • Patil A.R., Rao D.R.K. and Rastogi R.G., 1990a. Equatorial electrojet strengths in the Indian and American sectors, Part I. During low Solar activity. J. Geomagn. Geoelectr., 42, 801–811.

    Article  Google Scholar 

  • Patil A.R., Rao D.R.K. and Rastogi R.G., 1990b. Equatorial electrojet strengths in the Indian and American sectors, Part II. During high Solar activity. J. Geomagn. Geoelectr., 42, 813–823.

    Article  Google Scholar 

  • Rabiu A.B., Folarin O.O., Uozumi T., Abdul Hamid N.S. and Yoshikawa A., 2017. Longitudinal variation of equatorial electrojet and the occurrence of its counter electrojet. Ann. Geophys., 35, 535–545, DOI: https://doi.org/10.5194/angeo-35-535-2017.

    Article  Google Scholar 

  • Rastogi R.G. and Trivedi N.B., 1970. Luni-solar tides in H at stations within the equatorial electrojet. Planet. Space Sci., 18, 367–377.

    Article  Google Scholar 

  • Rastogi R.G., 1973. Counter equatorial electrojet currents in the Indian zone. Planet. Space Sci., 21, 1355–1365.

    Article  Google Scholar 

  • Rastogi R.G., 1974a. Westward equatorial electrojet during daytime hours. J. Geophys. Res., 79, 1503–1512.

    Article  Google Scholar 

  • Rastogi R.G., 1974b. Lunar effects in the counter electrojet near the magnetic equator. J. Atmos. Terr. Phys., 36, 167–170.

    Article  Google Scholar 

  • Rastogi R.G. and Klobuchar J.A., 1990. Ionospheric electron content within the equatorial F2 layer anomaly belt. J. Geophys. Res.-Space Phys., 95, 19045–19052, DOI: https://doi.org/10.1029/JA095iA11p19045.

    Article  Google Scholar 

  • Reigber C., Lühr H. and Schwintzer P., 2002. CHAMP mission status. Adv. Space Res., 30, 129–134, DOI: https://doi.org/10.1016/S0273-1177(02)00276-4.

    Article  Google Scholar 

  • Singh D., Gurubaran S. and He M., 2018. Evidence for the influence of DE3 tide on the occurrence of equatorial counterelectrojet. Geophys. Res. Lett., 45, 2145–2150, DOI: https://doi.org/10.1002/2018GL077076

    Article  Google Scholar 

  • Smart W.M., 1977. Textbook on Spherical Astronomy, 6th Edition. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Soares G., Yamazaki Y., Matzka J., Pinheiro K., Morschhauser A., Stolle C. and Alken P., 2018a. Equatorial counter electrojet longitudinal and seasonal variability in the American sector. J. Geophys. Res.-Space Phys., 123, 9906–9920, DOI: https://doi.org/10.1029/2018JA025968

    Article  Google Scholar 

  • Soares G., Matzka J. and Pinheiro K., 2018b. Preliminary Minute Means Geomagnetic Observatory Tatuoca (TTB), 2008 to 2017. V. 1. GFZ Data Services, DOI: https://doi.org/10.5880/GFZ.2.3.2018.005.

    Google Scholar 

  • Sugiura M. and Fanselau G., 1966. Lunar Phase Numbers v and v’ for Years 1850 to 2050. Report X-612-66-401. Goddard Space Flight Center, Greenbelt, MD.

    Google Scholar 

  • Thébault E., Finlay C.C., Beggan C.A. et al., 2015. International Geomagnetic Reference Field: the 12th generation. Earth Planets Space, 67, Art.No.67, DOI: https://doi.org/10.1186/s40623-015-0228-9.

  • Valladares C.E. and Chau J.L., 2012. The low-latitude ionosphere sensor network: initial results. Radio Sci., 47, RSOL17, DOI: https://doi.org/10.1029/2011RS004978.

    Article  Google Scholar 

  • Venkatesh K., Fagundes P.R., Prasad D.S.V.V.D., Denardini C.M., de Abreu A.J., de Jesus R. and Gende M., 2015. Day-to-day variability of equatorial electrojet and its role on the day-to-day characteristics of the equatorial ionization anomaly over the Indian and Brazilian sectors. J. Geophys. Res.-Space Phys., 120, 9117–9131, DOI: https://doi.org/10.1002/2015JA021307.

    Article  Google Scholar 

  • Vichare G. and Rajaram R., 2011. Global features of quiet time counterelectrojet observed by Ørsted. J. Geophys. Res.-Space Phys., 116, A04306, DOI: https://doi.org/10.1029/2009JA015244.

    Article  Google Scholar 

  • Yamazaki Y. and Maute A., 2017. Sq and EEJ — A review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Sci. Rev., 206, 299–405, DOI: https://doi.org/10.1007/s11214-016-0282-z

    Article  Google Scholar 

  • Yamazaki Y., Stolle C., Matzka J., Siddiqui T.A., Lühr H. and Alken P., 2017. Longitudinal variation of the Lunar tide in the equatorial electrojet. J. Geophys. Res.-Space Phys., 122, 12445–12463, DOI: https://doi.org/10.1002/2017JA024601

    Article  Google Scholar 

  • Yizengaw E., Moldwin M.B., Zesta E., Biouele C.M., Damtie B., Mebrahtu A., Rabiu B., Valladares C.F. and Stoneback R., 2014. The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors. Ann. Geophys., 32, 231–238, DOI: https://doi.org/10.5194/angeo-32-231-2014

    Article  Google Scholar 

  • Yumoto K. and the MAGDAS Group, 2006. MAGDAS project and its application for space weather. In: Gopalswamy N. and Bhattacharyya A. (Eds), Solar Influence on the Heliosphere and Earth’s Environment: Recent Progress and Prospects. Quest Publications, Mumbai, India, ISBN-81-87099-40-2, 309–405.

    Google Scholar 

  • Yumoto K. and the MAGDAS Group, 2007. Space weather activities at SERC for IHY: MAGDAS. Bull. Astr. Soc. India, 35, 511–522.

    Google Scholar 

  • Zhou Y.-L., Lühr H., Xu H.-W. and Alken P., 2018. Comprehensive analysis of the counter equatorial electrojet: Average properties as deduced from CHAMP observations. J. Geophys. Res.-Space Phys., 123, 5159–5181, DOI: https://doi.org/10.1029/2018JA025526.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Soares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, G., Yamazaki, Y., Matzka, J. et al. Longitudinal variability of the equatorial counter electrojet during the solar cycle 24. Stud Geophys Geod 63, 304–319 (2019). https://doi.org/10.1007/s11200-018-0286-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-018-0286-0

Keywords

Navigation