Skip to main content

Advertisement

Log in

Identifying pedogenic magnetic minerals in loess from China and Siberia using isothermal remanent magnetization acquisition curves

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Aeolian loess is carried by wind and undergoes pedogenesis after deposition. Therefore, both detrital components from the source region and soil pedogenic components contribute to the magnetic properties of the loess. The pedogenic component can be identified by analyzing the coercivity spectra of loess with different degrees of pedogenesis. We used isothermal remanent magnetization acquisition curves to analyze the coercivity spectra of loess in China and Siberia and defined the low (<30 mT), medium (60–100 mT) and high (>100 mT) coercivity components, i.e., components 1, 2, and 3, respectively. In the arid region of Xinjiang, Northwest China, the Bole section, with negligible soil development has loess with only component 2 centered at ∼80 mT. In semiarid central China, the Xifeng section has both loess and paleosols with three coercivity components centered at ∼26 mT, ∼82 mT, and ∼960 mT. Component 1 has a pedogenic origin, and the remanence contribution increases in a positive linear relationship with the intensity of pedogenesis. In the humid region of Siberia, the Kurtak section has three coercivity components are centered at ∼23 mT, ∼78 mT, and ∼1014 mT. The remanence contribution of component 1 shows a low correlation with the intensity of pedogenesis. Component 3 is characterized by high-coercivity minerals and its remanence contribution is related to the intensity of pedogenesis. The soil development in the semi-arid Xifeng section tends to produce massive fine-grained ferromagnetic minerals, so the remanence contribution of component 1 is positively correlated with the intensity of pedogenesis. The humid pedogenic environment of the Kurtak section is prone to form high-coercivity minerals and destroys fine-grained ferromagnetic minerals, so the remanence contribution of component 3 increases with the degree of pedogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Begét J.E., Stone D.B. and Hawkins D.B., 1990. Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the late Quaternary. Geology., 18, 40–43.

    Article  Google Scholar 

  • Chen J., Ji J., Balsam W., Chen Y., Liu L. and An Z., 2002. Characterization of the Chinese loess–paleosol stratigraphy by whiteness measurement. Palaeogeogr. Palaeoclimatol. Palaeoecol., 183, 287–297.

    Article  Google Scholar 

  • Chlachula J., Rutter N.W. and Evans M.E., 1997. A late Quaternary loess-paleosol record at Kurtak, southern Siberia. Can. J. Earth Sci., 34, 679–686.

    Article  Google Scholar 

  • Deng C.L., Shaw J., Liu Q.S., Pan Y.X. and Zhu R.X., 2006. Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: Implications for Quaternary development of Asian aridification and cooling. Earth Planet. Sci. Lett., 241, 248–259.

    Article  Google Scholar 

  • Deng C.L., Vidic N.J., Verosub K.L., Singer M.J., Liu Q.S., Shaw J. and Zhu R.X., 2005. Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on longterm climatic variability. J. Geophys. Res.-Solid Earth, 110, 767–782.

    Article  Google Scholar 

  • Deng C.L., Yuan B.Y., Zhu R.X., Verosub K.L., Singer M.J. and Vidic N.J., 2000. Magnetic susceptibility of Holocene loess-black loam sequence from Jiaodao, Shaanxi before and after citrate-bicarbonate-dithionite. Chin. J. Geophys., 43(04), 505–514 (in Chinese).

    Article  Google Scholar 

  • Deng C.L., Zhu R.X., Verosub K.L., Singer M.J. and Vidic N.J., 2004. Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. J. Geophys. Res.-Solid Earth, 109, 241–262.

    Article  Google Scholar 

  • Ding Z.L., Xiong S.F., Sun J.M., Yang S.L., Gu Z.Y. and Liu T.S., 1999. Pedostratigraphy and paleomagnetism of a ∼7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, northcentral China and the implications for paleomonsoon evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol., 152, 49–66.

    Article  Google Scholar 

  • Dunlop D. and Özdemir O., 1997. Rock Magnetism–Fundamentals and Frontiers. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Dunlop D.J., 1995. Magnetism in rocks. J. Geophys. Res.-Solid Earth, 100, 2161–2174.

    Article  Google Scholar 

  • Egli R., 2004. Characterization of individual rock magnetic components by analysis of remanence curves. 1. Unmixing natural sediments. Stud. Geophys. Geod., 48, 391–446.

    Article  Google Scholar 

  • Egli R., 2004. Characterization of individual rock magnetic components by analysis of remanence curves. 2. Fundamental properties of coercivity distributions. Phys. Chem. Earth., 29, 851–867.

    Google Scholar 

  • Evans M.E., 2001. Magnetoclimatology of aeolian sediments. Geophys. J. Int., 144, 495–497.

    Article  Google Scholar 

  • Evans M.E., Rutter N.W., Catto N., Chlachula J. and Nyvlt D., 2003. Magnetoclimatology: Teleconnection between the Siberian loess record and North Atlantic Heinrich events. Geology, 31, 537–540.

    Article  Google Scholar 

  • Eyre J.K., 1996. The application of high resolution IRM acquisition to the discrimination of remanence carriers in Chinese loess. Stud. Geophys. Geod., 40, 234–242.

    Article  Google Scholar 

  • Fine P., Verosub K.L. and Singer M.J., 1995. Pedogenic and lithogenic contributions to the magnetic susceptibility record of the Chinese loess/palaeosol sequence. Geophys. J. Int., 122, 97–107.

    Article  Google Scholar 

  • Florindo F., Zhu R., Guo B., Yue L., Pan Y. and Speranza F., 1999. Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese Loess Plateau. J. Geophys. Res.-Solid Earth, 104, 645–659.

    Article  Google Scholar 

  • Geiss C.E. and Zanner C.W., 2006. How abundant is pedogenic magnetite? Abundance and grain size estimates for loessic soils based on rock magnetic analyses. J. Geophys. Res.-Solid Earth, 111, B12S21.

    Article  Google Scholar 

  • Geiss C.E., Egli R. and Zanner C.W., 2008. Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils. J. Geophys. Res. -Solid Earth, 113, B11102.

    Article  Google Scholar 

  • Guo B., Zhu R.X., Roberts A.P. and Florindo F., 2001. Lack of correlation between paleoprecipitation and magnetic susceptibility of Chinese loess/paleosol sequences. Geophys. Res.Lett., 28, 4259–4262.

    Article  Google Scholar 

  • Guo Z.T., Ruddiman W.F. and Hao Q.Z., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416(6877), 159–163.

    Article  Google Scholar 

  • Heller F. and Evans M.E., 1995. Loess magnetism. Rev. Geophys., 33, 211–240.

    Article  Google Scholar 

  • Heslop D. and Dillon M., 2007. Unmixing magnetic remanence curves without a priori knowledge. Geophys. J. Int., 170, 556–566.

  • Heslop D., Mcintosh G. and Dekkers M.J., 2004. Using time- and temperature-dependent Preisach models to investigate the limitations of modelling isothermal remanent magnetization acquisition curves with cumulative log Gaussian functions. Geophys. J. Int., 157, 55–63.

    Article  Google Scholar 

  • Heslop D., Dekkers M.J., Kruiver P.P. and Van Oorschot I.H.M., 2002. Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm. Geophys. J. Int., 148, 58–64.

    Article  Google Scholar 

  • Hu P., Liu Q., Torrent J., Barron V. and Jin C., 2013. Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogenesis. Earth Planet. Sci. Lett., 369, 271–283.

    Article  Google Scholar 

  • Hunt C.P., Singer M.J., Kletetschka G., Tenpas J. and Verosub K.L., 1995. Effect of citratebicarbonate- dithionite treatment on fine-grained magnetite and maghemite. Earth Planet. Sci. Lett., 130, 87–94.

    Article  Google Scholar 

  • Hyland E.G., Sheldon N.D., Voo R.V.D., Badgley C. and Abrajevitch A., 2015. A new paleoprecipitation proxy based on soil magnetic properties: implications for expanding paleoclimate reconstructions. Geol. Soc. Am. Bull., 127, 975–981.

    Google Scholar 

  • Jia J., Xia D., Wang B., Wei H. and Liu X., 2012. Magnetic investigation of Late Quaternary loess deposition, Ili area, China. Quat. Int., 250, 84–92.

    Article  Google Scholar 

  • Just J., Dekkers M.J., Dobeneck T., Hoesel A. and Bickert T., 2012. Signatures and significance of aeolian, fluvial, bacterial and diagenetic magnetic mineral fractions in Late Quaternary marine sediments off Gambia, NW Africa. Geochem. Geophys. Geosyst., 13, Q0AO02.

    Google Scholar 

  • Kravchinsky V.A., Zykina V.S. and Zykin V.S., 2008. Magnetic indicator of global paleoclimate cycles in Siberian loess–paleosol sequences. Earth Planet. Sci. Lett., 265, 498–514.

    Article  Google Scholar 

  • Kruiver P.P. and Passier H.F., 2001. Coercivity analysis of magnetic phases in sapropel S1 related to variations in redox conditions, including an investigation of the S ratio. Geochem. Geophys. Geosyst., 2, 1525–2027.

    Article  Google Scholar 

  • Kruiver P.P., Dekkers M.J. and Heslop D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet. Sci. Lett., 189, 269–276.

    Article  Google Scholar 

  • Lü B., Liu X.M., Zhao G.Y., Ma M.M., Chen Q. and Chen J.S., 2012. Rock magnetic properties of Bole loess in Xinjiang and its environmental significance. J. Lanzhou Univ. Nat. Sci., 48(5), 1–8 (in Chinese).

    Google Scholar 

  • Lü B., Liu X.M., Chen Q., Zhao G.Y., Chen J.S., Mao X.G. and Guo X.L., 2012. Effect of CBD treatment on magnetic minerals of natural samples. Chin. J. Geophys., 55, 3077–3087 (in Chinese).

    Google Scholar 

  • Li X., Zhou J. and Dodson J., 2003. The vegetation characteristics of the ‘Yuan’ area at Yaoxian on the Loess Plateau in China over the last 12 000 years. Rev. Palaeobot. Palynology, 124, 1–7.

    Article  Google Scholar 

  • Liu Q.S., Banerjee S.K., Jackson M.J., Deng C.L., Pan Y.X. and Zhu R.X., 2005. Inter-profile correlation of the Chinese loess/paleosol sequences during Marine Oxygen Isotope Stage 5 and indications of pedogenesis. Quat. Sci. Rev., 24, 195–210.

    Article  Google Scholar 

  • Liu Q.S., Banerjee S.K., Jackson M.J., Zhu R. and Pan Y., 2002. A new method in mineral magnetism for the separation of weak antiferromagnetic signal from a strong ferrimagnetic background. Geophys. Res. Lett., 29, 1565.

    Article  Google Scholar 

  • Liu Q.S., Jackson M.J., Banerjee S.K., Maher B.A., Deng C.L., Pan Y.X. and Zhu R.X., 2004. Mechanism of the magnetic susceptibility enhancements of the Chinese loess. J. Geophys. Res., 109, B12107.

    Article  Google Scholar 

  • Liu Q.S., Jackson M.J., Yu Y., Chen F., Deng C. and Zhu R., 2004. Grain size distribution of pedogenic magnetic particles in Chinese loess/paleosols. Geophys. Res. Lett., 312, L22603.

    Google Scholar 

  • Liu Q.S., Torrent J., Maher B.A., Yu Y., Deng C.L., Zhu R.X. and Zhao X.X., 2005. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis. J. Geophys. Res.-Solid Earth, 110, B11102.

    Google Scholar 

  • Liu T.S., 1985. Loess and the Environment. Science Press, Beijing, China (in Chinese).

    Google Scholar 

  • Liu X.M., Liu T.S., Xia D.S., Hesse P., Chlachula J. and Wang G., 2007. Two pedogenic models for paleoclimatic records of magnetic susceptibility from Chinese and Siberian loess. Sci. China Ser. D: Earth Sci., 37(10), 1382–1391 (in Chinese).

    Article  Google Scholar 

  • Liu X.M., Shaw J., Liu T.S., Heller F. and Yuan B., 1992. Magnetic mineralogy of Chinese loess and its significance. Geophys. J. Int., 108, 301–308.

    Article  Google Scholar 

  • Liu X.M., Xia D.S., Liu T.S., Ding Z.L., Chen F.H. and Begét J.E., 2007. Discussion on two models of paleoclimatic records of magnetic susceptibility of Alaskan and Chinese loess. Quat. Sci., 27, 210–220 (in Chinese).

    Google Scholar 

  • Maher B.A., 1998. Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol., 137, 25–54.

    Article  Google Scholar 

  • Maxbauer D.P., Feinberg J.M. and Fox D.L., 2016. Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: A review of magnetic methods and challenges. Earth Sci. Rev., 155, 28–48.

    Article  Google Scholar 

  • Mcintosh G., Rolph T.C., Shaw J. and Dagley P., 1996. A detailed record of normal-reversedpolarity transition obtained from a thick loess sequence at Jiuzhoutai, near Lanzhou, China. Geophys. J. Int., 127, 651–664.

    Article  Google Scholar 

  • Nie J., Zhang R., Necula C., Heslop D., Liu Q., Gong L. and Banerjee S., 2014. Late Miocene-Early Pleistocene paleoclimate history of the Chinese Loess Plateau revealed by remanence unmixing. Geophys. Res. Lett., 41(6), 2163–2168.

    Article  Google Scholar 

  • Pelánková B., Kuneš P., Chytrý M., Jankovská V., Ermakov N. and Svobodová-Svitavská H., 2008. The relationships of modern pollen spectra to vegetation and climate along a steppe-foresttundra transition in southern Siberia, explored by decision trees. Holocene, 18, 1259–1271.

    Article  Google Scholar 

  • Reynolds R.L. and King J.W., 1995. Magnetic records of climate change. Rev. Geophys., 33(S1), 101–110.

    Article  Google Scholar 

  • Robertson D.J. and France D.E., 1994. Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetisation acquisition curves. Phys. Earth Planet. Inter., 82, 223–234.

    Article  Google Scholar 

  • Singer M.J., Fine P., Verosub K.L. and Chadwick O.A., 1992. Time dependence of magnetic susceptibility of soil chronosequences on the California coast. Quat. Res., 37, 323–332.

    Article  Google Scholar 

  • Song Y.G., Shi Z.T., Fang X.M., Nie J.S., Naoto I., Qiang X.K. and Wang X.L., 2010. Loess magnetic properties in the Ili Basin and their correlation with the Chinese Loess Plateau. Sci. China Ser. D: Earth Sci., 40(1), 61–72 (in Chinese).

    Google Scholar 

  • Spassov S., Heller F., Kretzschmar R., Evans M.E., Yue L.P. and Nourgaliev D.K., 2003. Detrital and pedogenic magnetic mineral phases in the loess/palaeosol sequence at Lingtai (Central Chinese Loess Plateau). Phys. Earth Planet. Inter., 140, 255–275.

    Article  Google Scholar 

  • Verosub K.L., Fine P., Singer M.J. and Tenpas J., 1993. Pedogenesis and paleoclimate - interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences. Geology, 21, 1011–1014.

    Article  Google Scholar 

  • Wang W., Feng Z., Ran M. and Zhang C., 2013. Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: A potential contribution to understanding of Holocene climate pattern in East-central Asia. Quat. Int., 311, 54–62.

    Article  Google Scholar 

  • Zander A., Frechen M., Zykina V. and Boenigk W., 2003. Luminescence chronology of the Upper Pleistocene loess record at Kurtak in Middle Siberia. Quat. Sci. Rev., 22, 999–1010.

    Article  Google Scholar 

  • Zhou L.P., Oldfield F., Wintle A.G., Robinson S.G. and Wang J.T., 1990. Partly pedogenic origin of magnetic variations in Chinese loess. Nature, 346(6286), 737–739.

    Article  Google Scholar 

  • Zhu R.X., Matasova G., Kazansky A., Zykina V. and Sun J.M., 2003. Rock magnetic record of the last glacial–interglacial cycle from the Kurtak loess section, southern Siberia. Geophys. J. Int., 152, 335–343.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, Z., Chen, J. & Liu, X. Identifying pedogenic magnetic minerals in loess from China and Siberia using isothermal remanent magnetization acquisition curves. Stud Geophys Geod 63, 147–167 (2019). https://doi.org/10.1007/s11200-018-0915-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-018-0915-7

Keywords

Navigation