Skip to main content

Advertisement

Log in

Evaluation of WorldView-3 VNIR and SWIR Data for Hydrothermal Alteration Mapping for Mineral Exploration: Case Study from Northeastern Isfahan, Iran

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

This research evaluated the capability of WorldView-3 (WV-3) data in discriminating targets related to porphyry copper mineralization at the Tameh district in the Saveh–Yazd belt, northeastern Isfahan, Iran. The few known porphyry copper deposits in this district were formed in association with Oligo-Miocene intrusive bodies. Hydrothermal alteration zones are characterized by iron oxide/hydroxide, sericite, illite, kaolinite, montmorillonite, chlorite, and epidote minerals. The band rationing method and the mixture-tuned matched filtering (MTMF) algorithm were utilized to map and identify targets. The results of band rationing showed that WV-3 VNIR–SWIR data can map and differentiate corchlorite and epidote as well as kaolinite and montmorillonite because of its superior spatial and spectral resolutions in SWIR region, as compared to ASTER data. Considering the similarity of five SWIR bands of WV-3 to the ASTER bands, both datasets help to enhance sericite–illite in similar patterns; however, areas mapped using WV-3 matched well with field evidence. Implementing the MTMF algorithm on the WV-3 VNIR and SWIR data successfully mapped areas with the highest abundances of desired minerals. Microscopic studies of thin sections, spectral investigations, and X-ray diffraction analysis confirmed the occurrence of alteration minerals, which also corresponded well to surface exposures of alterations in the field. Results showed that WV-3 data, with higher spectral and spatial resolutions, provide capability to map and identify hydrothermal alteration minerals and to produce more detailed mineralogical maps, which are valuable in semi-detailed district-scale exploration stages; in contrast, ASTER data yielded information on hydrothermally alteration zones mainly in regional scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Abrams, M., & Hook, S. J. (1995). Simulated ASTER data for geologic studies. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 692–699.

    Google Scholar 

  • Abrams, M. J., Conel, J. E., & Lang, H. R. (1984). Joint NASA/GEOSAT test case report (Vol. 3). Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Adams, J. B., & Gillespie, A. R. (2006). Remote sensing of landscapes with spectral images: A physical modeling approach. Cambridge: Cambridge University Press.

    Google Scholar 

  • Aghazadeh, M., Hou, Z., Badrzadeh, Z., & Zhou, L. (2015). Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U-Pb and molybdenite Re–Os geochronology. Ore Geology Reviews, 70, 385–406.

    Google Scholar 

  • Asadi Haroni, H. (2009). Summary Report at Kahang Porphyry Copper Deposit, Isfahan Province, Iran, Dorsa Company. Unpublished report.

  • Asadi Haroni, H. (2013). Preliminary exploration at Zafarghand Porphyry Copper Property, Central Iran, Dorsa Company. Unpublished report.

  • Asadi Haroni, H., & Tabatabaei, S. H. (2013). Detailed exploration of Zefreh porphyry Cu-Au prospect, NE Isfahan, Iran; Dorsa Company. Unpublished report.

  • Ayati, F., Yavuz, F., Asadi, H. H., Richards, J. P., & Jourdan, F. (2013). Petrology and geochemistry of calc-alkaline volcanic and subvolcanic rocks, Dalli porphyry copper-gold deposit, Markazi province, Iran. International Geology Review, 55, 158–184.

    Google Scholar 

  • Ayoobi, I., & Tangestani, M. H. (2017). Evaluating the effect of spatial subsetting on subpixel unmixing methodology applied to ASTER over a hydrothermally altered terrain. International Journal of Applied Earth Observation and Geoinformation, 62, 1–7.

    Google Scholar 

  • Baugh, B. (2014). Early case studies on geologic applications enabled by SWIR Bands on the WorldView-3 Satellite. GRSG AGM25 Years of Geological Remote Sensing.

  • Bedini, E. (2019). Application of WorldView-3 imagery and ASTER TIR data to map alteration minerals associated with the Rodalquilar gold deposits, southeast Spain. Advances in Space Research, 63(10), 3346–3357.

    Google Scholar 

  • Benson, D. (2013). WorldView-3 increases DigitalGlobe’s capabilities. GRSG AGM—Status and Developments in Geological Remote Sensing.

  • Berberian, F., & Berberian, M. (1981). Tectono-plutonic episodes in Iran. In H. K. Gupta & F. M. Delany (Eds.), Zagros Hindu Kush. Himalaya geodynamic evolution (pp. 5–32). Washington DC: American Geophysical Union.

    Google Scholar 

  • Boardman, J. W., Kruse, F. A., & Green, R. O. (1995). Mapping target signatures via partial unmixing of AVIRIS data: in summaries. Fifth JPL Airborne earth science workshop (Vol. 95-1, 1, pp. 23–26), JPL Publication.

  • Brown, M. (2015). Mineral mapping using WorldView-3 superspectral data. GRSG AGM challenges in geological remote sensing.

  • Clark, R. N. (1999). Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual of Remote Sensing, 3(3–58), 2.

    Google Scholar 

  • Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A., & Vergo, N. (1990). High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95, 12653–12680.

    Google Scholar 

  • Costa, E., Buzzi, J., Riaza, A., Fernandez, O., Garcia-Sellés, D., Anton Muñoz, J. (2015). Assessing the potential of WorldView-3 images applied to geological mapping by means of spectral unmixing in the Montsec Area (Pyrenees, Spain). GRSG AGMchallenges in geological remote sensing.

  • De Smith, M. J., Goodchild, M. F., & Longley, P. (2007). Geospatial analysis: a comprehensive guide to principles, techniques and software tools. Troubador Publishing Ltd.

  • Drury, S. A. (2001). Image interpretation in geology (3rd ed.). London: Allen & Unwin.

    Google Scholar 

  • Duke, E. F., & Lewis, R. S. (2010). Near infrared spectra of white mica in the Belt Supergroup and implications for metamorphism. American Mineralogist, 95, 908–920.

    Google Scholar 

  • Emami, M. H. (2000). Magmatism in Iran. Tehran: Geological Survey of Iran.

    Google Scholar 

  • Gad, S., & Kusky, T. (2007). ASTER spectral rationing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area. Sinai, Egypt. Gondwana Research, 11(3), 326–335.

    Google Scholar 

  • Ghorbani, M. (2002). Metallogeny regions of Iran. In 21st Earth sciences conference. Geological Survey Iran, Tehran.

  • Ghorbani, M. (2013). Economic geology of Iran. Mineral deposits and natural resources. Berlin: Springer.

    Google Scholar 

  • Gupta, R. P. (2003). Remote sensing geology (Vol. 655). Berlin: Springer.

    Google Scholar 

  • Harsanyi, J. C., & Chang, C. I. (1994). Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Transactions on Geoscience and Remote Sensing, 32(4), 779–785.

    Google Scholar 

  • Haschke, M., Ahmadian, J., Murata, M., & Mcdonald, I. (2010). Copper mineralization prevented by arc-root delamination during Alpine-Himalayan collision in central Iran. Economic Geology, 105, 855–865.

    Google Scholar 

  • Hunt, G. R. (1979). Near infrared spectra of alteration minerals-potential for use in remote sensing. Geophysics, 44(12), 1974–1986.

    Google Scholar 

  • Hunt, G. R., Salisbury, J. W., & Lenhoff, C. J. (1971). Visible and near infrared spectra of minerals and rocks. III. Oxides and hydroxides. Modern Geology, 2, 195–205.

    Google Scholar 

  • John, D. A., Ayuso, R. A., Barton, M. D., Blakely, R. J., Bodnar, R. J., Dilles, J. H., Gray, F., Graybeal, F. T., Mars, J. C., McPhee, D. K., Seal, R. R., Taylor, R. D., & Vikre, P. G. (2010). Porphyry copper deposit model, chap. B of mineral deposit models for resource assessment. U.S. Geological Survey Scientific Investigations Report 2010–5070–B. 169. Retrieved September 2, 2010 from  http://pubs.usgs.gov/sir/2010/5070/b/.

  • Kruse, F. A. (1988). Use of Airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the Northern Grapevine Mountains, Nevada and California. Remote Sensing of Environment, 24, 31–51.

    Google Scholar 

  • Kruse, F. A., Baugh, M. W., & Perry, S. L. (2015). Validation of DigitalGlobe Worldview-3 earth imaging satellite shortwave infrared bands for mineral mapping. Journal of Applied Remote Sensing, 9, 1–18.

    Google Scholar 

  • Kruse, F. A., & Perry, S. L. (2013). Mineral mapping using simulated Worldview-3 short-wave infrared imagery. Remote Sensing, 5(6), 2688–2703.

    Google Scholar 

  • Kuester, M. (2016). Radiometric use of WV-3 imagery. Technical Note. DigitalGlobe.

  • Kuester, M. A., Ochoa, M., Dayer, A., Levin, J., Aaron, D., Helder, D. L., Leigh, L., CzaplaMeyers, J., Anderson, N., Bader, B., Pacifici, F., Baugh, W., Karspeck, M., Longbotham, N., & Miecznik, G. (2015). Absolute radiometric calibration of the DigitalGlobe Fleet and updates on the new WV-3 sensor suite. Technical Note. DigitalGlobe.

  • Mahanta, P., & Maiti, S. (2018). Regional scale demarcation of alteration zone using ASTER imageries in South Purulia Shear Zone, East India: Implication for mineral exploration in vegetated regions. Ore Geology Reviews, 102, 846–861.

    Google Scholar 

  • Mars, J. C. (2014). Regional mapping of hydrothermally altered igneous rocks along the Urumieh–Dokhtar, Chagai, and Alborz Belts of western Asia using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language(IDL) logical operators—A tool for porphyry copper exploration and assessment. U.S. Geological Survey Scientific Investigations Report 20105090-O. http://dx.doi.org/10.3133/sir20105090O (36 p., 10 plates, and spatial data, available at).

  • Mars, J. C. (2018). Mineral and lithologic mapping capability of WorldView 3 data at Mountain Pass, California, using true-and false-color composite images, band ratios, and logical operator algorithms. Economic Geology, 113(7), 1587–1601.

    Google Scholar 

  • Mars, J. C., & Rowan, L. C. (2006). Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using advanced spaceborne thermal emission and reflection radiometer (ASTER) data and logical operator algorithms. Geosphere, 2(3), 161–186.

    Google Scholar 

  • Mundt, J. T., Streutker, D. R., & Glenn, N. F. (2007). Partial unmixing of hyperspectral imagery: Theory and methods. In Proceedings of the American Society of photogrammetry and remote sensing.

  • Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., & Jolivet, L. (2008). Arc magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos, 106, 380–398.

    Google Scholar 

  • Pendock, N., Lloyd, A., & Dorfling, J. (2015). Mineral mapping from Worldview-3: An acid mine drainage example from the West Wits. GRSG AGM-challenges in geological remote sensing.

  • Perry, S. L. (2015). Mineral composition modeling from Worldview-3 Hi-Res satellite imagery. GRSG AGM-challenges in geological remote sensing.

  • Pirajno, F. (2009). Hydrothermal processes and mineral systems (p. 1250). Berlin: Springer.

    Google Scholar 

  • Pontual, S., Merry, N., & Gamson, P. (2008). Spectral interpretation—Field manual. GMEX. Spectral Analysis guides for mineral exploration (p. 189). Vicoria: AusSpec International Pty. Ltd.

    Google Scholar 

  • Post, J. L., & Noble, P. L. (1993). The near-infrared combination band frequencies of dioctahedral smectites, micas and illites. Clays and Clay Minerals, 41, 639–644.

    Google Scholar 

  • Pour, A. B., & Hashim, M. (2012). The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1–9.

    Google Scholar 

  • Pour, A. B., Park, Y., Park, T. Y. S., Hong, J. K., Hashim, M., Woo, J., et al. (2019). Evaluation of ICA and CEM algorithms with Landsat-8/ASTER data for geological mapping in inaccessible regions. Geocarto International, 34(7), 785–816.

    Google Scholar 

  • Radfar, J., Amini Chehragh, M. R., & Emani, M. H. (1999). 1:100,000 geological map of the Ardestan. Tehran: Geological Survey of Iran (GSI).

    Google Scholar 

  • Radfar, J., Kohansal, R., & Emani, M. H. (2002). 1:100,000 geological map of the Kuhpayeh. Tehran: Geological Survey of Iran (GSI).

    Google Scholar 

  • Rowan, L. C., & Mars, J. C. (2003). Lithologic mapping in the Mountain Pass, California, area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84, 350–366.

    Google Scholar 

  • Rowan, L. C., Wetlaufer, P. H., Goetz, A. F. H., Billingsley, F. C., & Stewart, J. H. (1974). Discrimination of rock types and detection of hydrothermally altered area in South-central Nevada by the use of computer-enhanced ERTS images. Reston: U.S. Geological Survey.

    Google Scholar 

  • Safaei, H., Taheri, A., & Vaziri-Moghaddam, H. (2008). Structural analysis and evolution of the Kashan (Qom-Zefreh) Fault, Central Iran. Journal of Applied Sciences, 8(8), 1426–1434.

    Google Scholar 

  • Salehi, T., & Tangestani, M. H. (2018). Large-scale mapping of iron oxide and hydroxide minerals of Zefreh porphyry copper deposit, using Worldview-3 VNIR data in the Northeastern Isfahan, Iran. International Journal of Applied Earth Observation and Geoinformation, 73, 156–169.

    Google Scholar 

  • Shafiei, B., Haschke, M., & Shahabpour, J. (2009). Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, Southeastern Iran. Mineralium Deposita, 44, 265–283.

    Google Scholar 

  • Shahabpour, J. (1994). Post-mineral breccia dyke from the Sar-Cheshmeh porphyry copper deposit, Kerman, Iran. Exploration and Mining Geology, 3, 39–43.

    Google Scholar 

  • Spacecraft and Satellites. (2015). WorldView-3 satellite overview. Retrieved May 22, 2014 from http://spaceflight101.com/spacecraft/worldview-3.

  • Sun, Y., Tian, S., & Di, B. (2017). Extracting mineral alteration information using Worldview-3 data. Geoscience Frontiers, 8, 1051–1062.

    Google Scholar 

  • Tabaei, M., Mehdizadeh, R., & Esmaeili, M. (2016). Stratigraphical evidences of the Qom—Zefreh Fault system activity, Central Iran. Journal of Tethys, 4(1), 18–26.

    Google Scholar 

  • The Spectral Geologist manual. (2018). TSG software Help, Commonwealth Scientific and Industrial Research Organization (CSIRO) 19982018. Retrieved June 2018, from. https://research.csiro.au/thespectralgeologist/support/tsg-training.

  • Tommaso, I. D., & Rubinstein, N. (2007). Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, 32, 275–290.

    Google Scholar 

  • Updike, T., & Comp, C. (2010). Radiometric use of WorldView-2 imagery. Technical Note. DigitalGlobe. Inc., Longmont, CO, USA.

  • Yang, R. H., Li, Z. Z., & Cheng, X. F. (2012). Information extraction of typical alteration mineral assemblage in porphyry copper using ASTER satellite data, Arequipa Province of South Peru. Journal of Geo-Information Science, 14(3), 411–418.

    Google Scholar 

  • Ye, B., Tian, S. H., Ge, J., & Sun, Y. (2017). Assessment of WorldView-3 data for lithological mapping. Remote Sensing, 9(1132), 1–19.

    Google Scholar 

  • Zahedi, M., & Rahmati, M. (2002). 1:100,000 geological map of the Tarq. Tehran: Geological Survey of Iran (GSI).

    Google Scholar 

  • Zamani, F. (2013). Geochemical exploration and genesis study of Cu-Au shojaabad occurrence (south of Natanz). Master’s thesis, University of Isfahan, Iran.

Download references

Acknowledgments

DigitalGlobe Foundation Inc. at Longmont, Colorado, USA, is appreciated for providing the WV-3 imagery. The authors acknowledge Miss Anna Fonseca, a principal geological consultant at SRK Consulting Company, Toronto, Ontario, Canada, for her assistance in analyzing the field spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid H. Tangestani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, T., H. Tangestani, M. Evaluation of WorldView-3 VNIR and SWIR Data for Hydrothermal Alteration Mapping for Mineral Exploration: Case Study from Northeastern Isfahan, Iran. Nat Resour Res 29, 3479–3503 (2020). https://doi.org/10.1007/s11053-020-09703-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09703-6

Keywords

Navigation