Skip to main content

Advertisement

Log in

Geodata Science-Based Mineral Prospectivity Mapping: A Review

  • Review Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

This paper introduces the concept of geodata science-based mineral prospectivity mapping (GSMPM), which is based on analyzing the spatial associations between geological prospecting big data (GPBD) and locations of known mineralization. Geodata science reveals the inter-correlations between GPBD and mineralization, converts GPBD into mappable criteria, and combines multiple mappable criteria into a mineral potential map. A workflow of the GSMPM is proposed and compared with the traditional workflow of mineral prospectivity mapping. More specifically, each component in such a workflow is explained in detail to demonstrate how geodata science serves mineral prospectivity mapping by deriving geoinformation from geoscience data, generating geo-knowledge from geoinformation, and allowing spatial decision-making by integrating geoinformation and geo-knowledge on the formation of mineral deposits. This review also presents several research directions for GSMPM in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Agterberg, F. P. (1989a). Systematic approach to dealing with uncertainty of geoscience information in mineral exploration. In Proceedings of the 21st APCOM symposium, Las Vegas (pp. 165–178).

  • Agterberg, F. P. (1989b). Computer programs for mineral exploration. Science, 245, 76–81.

    Google Scholar 

  • Agterberg, F. P., & Bonham-Carter, G. F. (1990). Deriving weights-of-evidence from geoscience contour maps for prediction of discrete events. In Proceedings of the 22nd APCOM symposium, Berlin (Vol. 2, pp. 381–395).

  • Agterberg, F. P., & Bonham-Carter, G. F. (1999). Logistic regression and weights of evidence modeling in mineral exploration. In Proceedings of 28th international symposium on computer applications in the mineral industries, Golden (pp. 483–490).

  • An, P., Moon, W. M., & Rencz, A. (1991). Application of fuzzy set theory to integrated mineral exploration. Canadian Journal of Exploration Geophysics, 27, 1–11.

    Google Scholar 

  • Bárdossy, G., & Fodor, J. (2004). Evaluation of uncertainties and risks in Geology (Vol. 33, pp. 157–158). Berlin: Springer.

    Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: Modelling with GIS (p. 398). Oxford: Pergamon Press.

    Google Scholar 

  • Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1989). Weights of evidence modelling: A new approach to mapping mineral potential. In: F. P. Agterberg & G. F. Bonham-Carter (Eds.), Statistical applications in the earth sciences. Geological Survey of Canada Paper, 171–183.

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS: Amsterdam. In M. Hale (Ed.), Handbook of exploration and environmental geochemistry (Vol. 11, p. 351). Amsterdam: Elsevier.

    Google Scholar 

  • Carranza, E. J. M. (2017). Natural resources research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields. Natural Resources Research, 26, 379–410.

    Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2003). Evidential belief functions for geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22, 117–132.

    Google Scholar 

  • Carranza, E. J. M., Hale, M., & Faassen, C. (2008). Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Reviews, 33, 536–558.

    Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015a). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.

    Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015b). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geology Reviews, 71, 777–787.

    Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25, 35–50.

    Google Scholar 

  • Carranza, E. J. M., Woldai, T., & Chikambwe, E. M. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing Pegmatites, Lundazi District, Zambia. Natural Resources Research, 14, 47–63.

    Google Scholar 

  • Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Editorial: Special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6, 1–6.

    Google Scholar 

  • Chawla, N. V., Lazarevic, A., Hall, L. O., & Bowyer, K. W. (2003). SMOTEBoost: Improving prediction of the minority class in boosting. In 7th European conference on principles of data mining and knowledge discovery (pp. 107–119). Berlin: Springer.

  • Chen, Y. (2015). Mineral potential mapping with a restricted Boltzmann machine. Ore Geology Reviews, 71, 749–760.

    Google Scholar 

  • Chen, Y., & Wu, W. (2017). Mapping mineral prospectivity using an extreme learning machine regression. Ore Geology Reviews, 80, 200–213.

    Google Scholar 

  • Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32, 314–324.

    Google Scholar 

  • Cheng, Q., & Agterberg, F. P. (1999). Fuzzy weights of evidence method and its application in mineral potential. Natural Resources Research, 8, 7–35.

    Google Scholar 

  • Chung, C. F., & Agterberg, F. P. (1980). Regression models for estimating mineral resources from geological map data. Mathematical Geology, 12, 472–488.

    Google Scholar 

  • Davies, R. S., Groves, D. I., Trench, A., & Dentith, M. (2020). Towards producing mineral resource-potential maps within a mineral systems framework, with emphasis on Australian orogenic gold systems. Ore Geology Reviews, 119, 103369.

    Google Scholar 

  • Ford, A., Peters, K. J., Partington, G. A., Blevin, P. L., Downes, P. M., Fitzherbert, J. A., et al. (2019). Translating expressions of intrusion-related mineral systems into mappable spatial proxies for mineral potential mapping: Case studies from the Southern New England Orogen, Australia. Ore Geology Reviews, 111, 102943.

    Google Scholar 

  • Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75, 16–28.

    Google Scholar 

  • Groves, D. I., Santosh, M., & Zhang, L. (2020). A scale-integrated exploration model for orogenic gold deposits based on a mineral system approach. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2019.12.007.

    Article  Google Scholar 

  • Guo, H., Wang, L., & Liang, D. (2016). Big earth data from space: A new engine for earth science. Science Bulletin, 61, 505–513.

    Google Scholar 

  • Harris, J. R., Grunsky, E., Behnia, P., & Corrigan, D. (2015). Data-and knowledge-driven mineral prospectivity maps for Canada’s North. Ore Geology Reviews, 71, 788–803.

    Google Scholar 

  • Harris, J. R., Sanborn-Barrie, M., Panagapko, D. A., Skulski, T., & Parker, J. R. (2006). Gold prospectivity maps of the Red Lake greenstone belt: Application of GIS technology. Canadian Journal of Earth Sciences, 43, 865–893.

    Google Scholar 

  • Holden, E. J., Liu, W., Horrocks, T., Wang, R., Wedge, D., Duuring, P., et al. (2019). GeoDocA–fast analysis of geological content in mineral exploration reports: A text mining approach. Ore Geology Reviews, 111, 102919.

    Google Scholar 

  • Knox-Robinson, C. M., & Wyborn, L. A. I. (1997). Towards a holistic exploration strategy: Using geographic information systems as tool to enhance exploration. Australian Journal of Earth Sciences, 44, 453–463.

    Google Scholar 

  • Kreuzer, O. P., Etheridge, M. A., Guj, P., McMahon, M. E., & Holden, D. J. (2008). Linking mineral deposit models to quantitative risk analysis and decision-making in exploration. Economic Geology, 103, 829–850.

    Google Scholar 

  • Kreuzer, O. P., Yousefi, M., & Nykänen, V. (2020). Introduction to the special issue on spatial modelling and analysis of ore-forming processes in mineral exploration targeting. Ore Geology Reviews, 119, 103391.

    Google Scholar 

  • Li, S., Chen, J., & Xiang, J. (2018). Prospecting information extraction by text mining based on convolutional neural networks-a case study of the Lala copper deposit. IEEE Access, 6, 52286–52297.

    Google Scholar 

  • Li, S., Chen, J., & Xiang, J. (2019). Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data. Neural Computing and Applications. https://doi.org/10.1007/s00521-019-04341-3.

    Article  Google Scholar 

  • Mann, C. J. (1993). Uncertainty in geology. In J. Davis & U. Z. Herzfeld (Eds.), Computers in geology-25 years of progress (pp. 241–254). Oxford: Oxford University Press.

    Google Scholar 

  • Matheron, G. (1962). Traité de Géostatistque Appliquée. Bur. Rech. Géol. Min. Mém., 667, 333.

    Google Scholar 

  • Mayer-Schonberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work and think. New York: Houghton Mifflin Harcourt Publishing Company.

    Google Scholar 

  • McCuaig, T. C., Beresford, S., & Hronsky, J. (2010). Translating the mineral systems approach into an effective exploration targeting system. Ore Geology Reviews, 38, 128–138.

    Google Scholar 

  • McCuaig, T. C., & Hronsky, J. M. A. (2014). The mineral system concept: The key to exploration targeting. SEG 2014 building exploration capability for the 21st century (pp. 153–175).

  • McKay, G., & Harris, J. R. (2016). Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectivity mapping: A case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research, 25, 125–143.

    Google Scholar 

  • Naur, P. (1974). Concise survey of computer methods. New York: Petrocelli Books.

    Google Scholar 

  • Nykänen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models—a magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, northern Finland. Ore Geology Reviews, 71, 853–860.

    Google Scholar 

  • Peters, E., Zhang, C., Livny, M., & Ré, C. (2014). A machine reading system for assembling synthetic paleontological databases. PLoS ONE, 9, 1–22.

    Google Scholar 

  • Porwal, A., & Carranza, E. M. J. (2015). Introduction to the special issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ore Geology Reviews, 71, 477–483.

    Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003). Artificial neural networks for mineral potential mapping: A case study from Aravalli province, western India. Natural Resources Research, 12, 155–177.

    Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2006). A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Natural Resources Research, 8, 27–35.

    Google Scholar 

  • Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., et al. (2018). Deep learning and process understanding for data-driven Earth system science. Nature, 566, 195–204.

    Google Scholar 

  • Rodriguez-Galiano, V. F., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. International Journal of Geographical Information Science, 28, 1336–1354.

    Google Scholar 

  • Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818.

    Google Scholar 

  • Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2010). RUSBoost: A hybrid approach to alleviating class imbalance. IEEE Transactions on Systems Man and Cybernetics-Part A Systems & Humans, 40, 185–197.

    Google Scholar 

  • Singer, D. A., & Kouda, R. (1996). Application of a feedforward neural network in the search for Kuroko deposits in the Hokuroku district, Japan. Mathematical Geology, 28, 1017–1023.

    Google Scholar 

  • Singer, D. A., & Kouda, R. (1997). Classification of mineral deposits into types using mineralogy with a probabilistic neural network. Nonrenewable Resources, 6, 69–81.

    Google Scholar 

  • Singer, D. A., & Kouda, R. (1999). A comparison of the weights of evidence method and probabilistic neural networks. Natural Resources Research, 8, 287–298.

    Google Scholar 

  • Singer, D. A., & Menzie, W. D. (2010). Quantitative mineral resource assessments—an integrated approach (p. 232). Oxford: Oxford University Press.

    Google Scholar 

  • Sun, T., Li, H., Wu, K., Chen, F., Zhu, Z., & Hu, Z. (2020). Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from southern Jiangxi province, China. Minerals, 10, 102.

    Google Scholar 

  • Wang, C., Ma, X., Chen, J., & Chen, J. (2018). Information extraction and knowledge graph construction from geoscience literature. Computers & Geosciences, 112, 112–120.

    Google Scholar 

  • Wang, Z., Yin, Z., Cares, J., & Zuo, R. (2020a). A Monte Carlo-based framework for risk-return analysis in mineral prospectivity mapping. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2020.02.010.

    Article  Google Scholar 

  • Wang, J., Zuo, R., & Xiong, Y. (2020b). Mapping mineral prospectivity via semi–supervised random forest. Natural Resources Research, 29, 189–202.

    Google Scholar 

  • Watson, D. F., & Philip, G. M. (1985). A refinement of inverse distance weighted interpolation. Geoprocessing, 2, 315–327.

    Google Scholar 

  • Wong, W., Liu, W., & Bennamoun, M. (2012). Ontology learning from text: A look back and into the future. ACM Computing & Surveys (CSUR), 44, 1–36.

    Google Scholar 

  • Wyborn, L. A. I., Heinrich, C. A., & Jaques, A. L. (1994). Australian Proterozoic mineral systems. Essential ingredients and mappable criteria. In Australian Institute of Mining and Metallurgy annual conference (pp. 109–115). AusIMM Darwin.

  • Xiong, Y., Zuo, R., & Carranza, E. J. M. (2018). Mapping mineral prospectivity through big data analytics and a deep learning algorithm. Ore Geology Reviews, 102, 811–817.

    Google Scholar 

  • Yousefi, M., Kreuzer, O. P., Nykänen, V., & Hronsky, J. M. A. (2019). Exploration information systems—a proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 111, 103005.

    Google Scholar 

  • Zhang, Y., Chen, M., & Liu. L. (2015). A review on text mining. In Proceedings of the 6th IEEE international conference on software engineering & service science (pp. 681–685). IEEE.

  • Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences, 59, 556–572.

    Google Scholar 

  • Zhao, P. (2007). Quantitative mineral prediction and deep mineral exploration. Earth Science Frontiers, 14, 1–10. (In Chinese with English Abstract).

    Google Scholar 

  • Zhou, Z., & Liu, X. (2006). Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering, 18, 63–77.

    Google Scholar 

  • Zuo, R. (2017). Machine learning of mineralization-related geochemical anomalies: A review of potential methods. Natural Resources Research, 26, 457–464.

    Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers & Geosciences, 37, 1967–1975.

    Google Scholar 

  • Zuo, R., & Wang, Z. (2020). Effects of random negative training samples on mineral prospectivity mapping. Natural Resources Research. https://doi.org/10.1007/s11053-020-09668-6.

    Article  Google Scholar 

  • Zuo, R., & Xiong, Y. (2018). Big data analytics of identifying geochemical anomalies supported by machine learning methods. Natural Resources Research, 27, 5–13.

    Google Scholar 

  • Zuo, R., & Xiong, Y. (2020). Geodata science and geochemical mapping. Journal of Geochemical Exploration, 209, 106431.

    Google Scholar 

  • Zuo, R., Xiong, Y., Wang, J., & Carranza, E. J. M. (2019). Deep learning and its application in geochemical mapping. Earth Science Reviews, 192, 1–14.

    Google Scholar 

  • Zuo, R., Zhang, Z., Zhang, D., Carranza, E. J. M., & Wang, H. (2015). Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: A case study with skarn-type Fe deposits in Southwestern Fujian Province, China. Ore Geology Reviews, 71, 502–515.

    Google Scholar 

Download references

Acknowledgments

I thank two reviewers’ comments and suggestions which help me improve this review. This study was supported by the National Natural Science Foundation of China (Nos. 41972303 and 41772344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renguang Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, R. Geodata Science-Based Mineral Prospectivity Mapping: A Review. Nat Resour Res 29, 3415–3424 (2020). https://doi.org/10.1007/s11053-020-09700-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09700-9

Keywords

Navigation