Skip to main content
Log in

Lie Algebras of Heat Operators in a Nonholonomic Frame

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We construct the Lie algebras of systems of \(2g\) graded heat operators \(Q_0,Q_2,\dots,Q_{4g-2}\) that determine the sigma functions \(\sigma(z,\lambda)\) of hyperelliptic curves of genera \(g=1\), \(2\), and \(3\). As a corollary, we find that the system of three operators \(Q_0\), \(Q_2\), and \(Q_4\) is already sufficient for determining the sigma functions. The operator \(Q_0\) is the Euler operator, and each of the operators \(Q_{2k}\), \(k>0\), determines a \(g\)-dimensional Schrödinger equation with potential quadratic in \(z\) for a nonholonomic frame of vector fields in the space \(\mathbb C^{2g}\) with coordinates \(\lambda\). For any solution \(\varphi(z,\lambda)\) of the system of heat equations, we introduce the graded ring \(\mathscr R_\varphi\) generated by the logarithmic derivatives of \(\varphi(z,\lambda)\) of order \(\ge 2\) and present the Lie algebra of derivations of \(\mathscr R_\varphi\) explicitly. We show how this Lie algebra is related to our system of nonlinear equations. For \(\varphi(z,\lambda)=\sigma(z,\lambda)\), this leads to a well-known result on how to construct the Lie algebra of differentiations of hyperelliptic functions of genus \(g=1,2,3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. V. M. Buchstaber and D. V. Leikin, “Heat equations in a nonholonomic frame,” Functional Anal. Appl. 38 (2), 88–101 (2004).

    MathSciNet  Google Scholar 

  2. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leikin, Kleinian Functions, Hyperelliptic Jacobians and Applications, in Reviews in Math. and Math. Phys. (Gordon and Breach, London, 1997), Vol. 10.

    MATH  Google Scholar 

  3. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leikin, “Hyperelliptic Kleinian functions and applications,” in Solitons, Geometry and Topology: On the Crossroad, Amer. Math. Soc. Transl. Ser. 2 (Amer. Math. Soc., Providence, RI, 1997), Vol. 179, pp. 1–33.

    MathSciNet  Google Scholar 

  4. V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg–de Vries equation,” Proc. Steklov Inst. Math. 294, 176–200 (2016).

    MathSciNet  MATH  Google Scholar 

  5. V. I. Arnold, Singularities of Caustics and Wave Fronts (Fazis, Moscow, 1996) [in Russian].

    Google Scholar 

  6. V. M. Buchstaber and A. V. Mikhailov, “Infinite-dimensional Lie algebras determined by the space of symmetric squares of hyperelliptic curves,” Functional Anal. Appl. 51 (1), 2–21 (2017).

    MathSciNet  MATH  Google Scholar 

  7. E. Yu. Bunkova, “Differentiation of genus 3 hyperelliptic functions,” Eur. J. Math. 4 (1), 93–112 (2018); arXiv: 1703.03947.

    MathSciNet  MATH  Google Scholar 

  8. J. C. Eilbeck, J. Gibbons, Y. Onishi, and S. Yasuda, Theory of Heat Equations for Sigma Functions, arXiv: 1711.08395 (2018).

    Google Scholar 

  9. V. M. Buchstaber and D. V. Leikin, “Differentiation of Abelian functions with respect to parameters,” Russian Math. Surveys 62 (4), 787–789 (2007).

    MathSciNet  MATH  Google Scholar 

  10. V. M. Buchstaber and D. V. Leikin, “Solution of the problem of differentiation of abelian functions over parameters for families of \((n,s)\)-curves,” Functional Anal. Appl. 42 (4), 268–278 (2008).

    MathSciNet  MATH  Google Scholar 

  11. V. M. Buchstaber and D. V. Leikin, “Polynomial Lie algebras,” Functional Anal. Appl. 36 (4), 267–280 (2002).

    MathSciNet  MATH  Google Scholar 

  12. D. V. Millionshchikov, “Polynomial Lie algebras and growth of their finitely generated Lie subalgebras,” Proc. Steklov Inst. Math. 302, 298–314 (2018).

    MathSciNet  MATH  Google Scholar 

  13. J. D. Cole, “On a quasi-linear parabolic equation occurring in aerodynamics,” Quart. Appl. Math. 9 (3), 225–236 (1951).

    MathSciNet  MATH  Google Scholar 

  14. E. Hopf, “The partial differential equation \(u_t+uu_x=u_{xx}\),” Comm. Pure Appl. Math. 3, 201–230 (1950).

    MathSciNet  MATH  Google Scholar 

  15. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Problem Method (Nauka, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

  16. L. Stickelberger and F. G. Frobenius, “Über die Differentiation der elliptischen Functionen nach den Perioden und Invarianten,” J. reine angew. Math. 92, 311–327 (1882).

    MathSciNet  MATH  Google Scholar 

  17. V. M. Buchstaber, V. Z. Enolski, and D. V. Leykin, “Multi-variable sigma-functions: old and new results,” in Integrable Systems and Algebraic Geometry, LMS Lecture Note Ser. (Cambridge Univ. Press, Cambridge, 2019), Vol. 2 (in press); arXiv: 1810.11079.

    Google Scholar 

  18. B. A. Dubrovin and S. P. Novikov, “A periodicity problem for the Korteweg–de Vries and Sturm–Liouville equations. Their connection with algebraic geometry,” Soviet Math. Dokl. 15, 1597–1601 (1974).

    MATH  Google Scholar 

  19. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leikin, Multi-Dimensional Sigma-Functions, arXiv: 1208.0990 (2012).

    Google Scholar 

  20. H. F. Baker, “On the hyperelliptic sigma functions,” Amer. J. Math. 20 (4), 301–384 (1898).

    MathSciNet  MATH  Google Scholar 

  21. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, Cambridge, 1996).

    MATH  Google Scholar 

  22. E. Yu. Bunkova, “On the problem of differentiation of hyperelliptic functions,” Eur. J. Math. 5 (3), 712–719 (2019); arXiv: 1812.04245.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to express gratitude to Dmitrii Vladimirovich Millionshchikov for valuable remarks and comments, which have helped us to improve the exposition of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Buchstaber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchstaber, V.M., Bunkova, E.Y. Lie Algebras of Heat Operators in a Nonholonomic Frame. Math Notes 108, 15–28 (2020). https://doi.org/10.1134/S0001434620070020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434620070020

Keywords

Navigation