Skip to main content
Log in

Fermi Surfaces of Composite Fermions

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The fractional quantum Hall (FQH) effect was discovered in two-dimensional electron systems subject to a large perpendicular magnetic field nearly four decades ago. It helped launch the field of topological phases, and in addition, because of the quenching of the kinetic energy, gave new meaning to the phrase “correlated matter.” Most FQH phases are gapped like insulators and superconductors; however, a small subset with even denominator fractional fillings \(\nu \) of the Landau level, typified by \(\nu =1/2\), is found to be gapless, with a Fermi surface akin to metals. We discuss our results, obtained numerically using the infinite density matrix renormalization group scheme, on the effect of non-isotropic distortions with discrete N-fold rotational symmetry of the Fermi surface at zero magnetic field on the Fermi surface of the correlated \(\nu = 1/2\) state. We find that while the response for \(N = 2\) (elliptical) distortions is significant (and in agreement with experimental observations with no adjustable parameters), it decreases very rapidly as N is increased. Other anomalies, like resilience to breaking the Fermi surface into disjoint pieces, are also found. This highlights the difference between Fermi surfaces formed from the kinetic energy, and those formed of purely potential energy terms in the Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. \(\delta \) may be 0 or 1/2 depending on the boundary conditions (periodic or antiperiodic) of CFs, which are emergent.

  2. This is partly explained by the absence of a quadratic term (\(c_2=0\) by symmetry), but also due to the (unexplained, as far as we know) smallness of the symmetry-allowed cubic term \(c_3\).

References

  1. D.C. Tsui, H.L. Stormer, A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559 (1982). https://doi.org/10.1103/PhysRevLett.48.1559

    Article  ADS  Google Scholar 

  2. R.B. Laughlin, Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983). https://doi.org/10.1103/PhysRevLett.50.1395

    Article  ADS  Google Scholar 

  3. F.D.M. Haldane, Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51, 605 (1983). https://doi.org/10.1103/PhysRevLett.51.605

    Article  ADS  MathSciNet  Google Scholar 

  4. J.K. Jain, Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199 (1989). https://doi.org/10.1103/PhysRevLett.63.199

    Article  ADS  Google Scholar 

  5. J.K. Jain, Composite Fermions (Cambridge University Press, Cambridge, 2007). https://doi.org/10.1017/CBO9780511607561

    Book  MATH  Google Scholar 

  6. R.R. Du, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. West, Experimental evidence for new particles in the fractional quantum Hall effect. Phys. Rev. Lett. 70, 2944 (1993). https://doi.org/10.1103/PhysRevLett.70.2944

    Article  ADS  Google Scholar 

  7. H.L. Stormer, D.C. Tsui, A.C. Gossard, The fractional quantum Hall effect. Rev. Mod. Phys. 71, S298 (1999). https://doi.org/10.1103/RevModPhys.71.S298

    Article  MathSciNet  Google Scholar 

  8. B.I. Halperin, P.A. Lee, N. Read, Theory of the half-filled Landau level. Phys. Rev. B 47, 7312 (1993). https://doi.org/10.1103/PhysRevB.47.7312

    Article  ADS  Google Scholar 

  9. D. Kamburov, M. Shayegan, L.N. Pfeiffer, K.W. West, K.W. Baldwin, Commensurability oscillations of hole-flux composite fermions. Phys. Rev. Lett. 109, 236401 (2012). https://doi.org/10.1103/PhysRevLett.109.236401

    Article  ADS  Google Scholar 

  10. D.T. Son, Is the composite fermion a Dirac particle? Phys. Rev. X 5, 031027 (2015). https://doi.org/10.1103/PhysRevX.5.031027

    Article  Google Scholar 

  11. S.D. Geraedts, M.P. Zaletel, R.S.K. Mong, M.A. Metlitski, A. Vishwanath, O.I. Motrunich, The half-filled Landau level: the case for Dirac composite fermions. Science 352(6282), 197 (2016). https://doi.org/10.1126/science.aad4302

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. S.D. Geraedts, J. Wang, E.H. Rezayi, F.D.M. Haldane, Berry phase and model wave function in the half-filled Landau level. Phys. Rev. Lett. 121, 147202 (2018). https://doi.org/10.1103/PhysRevLett.121.147202

    Article  ADS  Google Scholar 

  13. F.D.M. Haldane, Geometrical description of the fractional quantum Hall effect. Phys. Rev. Lett. 107, 116801 (2011). https://doi.org/10.1103/PhysRevLett.107.116801

    Article  ADS  Google Scholar 

  14. J.B. Ketterson, R.W. Stark, Fermi surface of magnesium. I. Magnetoacoustic attenuation. Phys. Rev. 156, 748 (1967). https://doi.org/10.1103/PhysRev.156.748

    Article  ADS  Google Scholar 

  15. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976). See page 306 for the complex Fermi surface of Tungsten

  16. I. Jo, K.A.V. Rosales, M.A. Mueed, L.N. Pfeiffer, K.W. West, K.W. Baldwin, R. Winkler, M. Padmanabhan, M. Shayegan, Transference of Fermi contour anisotropy to composite fermions. Phys. Rev. Lett. 119, 016402 (2017). https://doi.org/10.1103/PhysRevLett.119.016402

    Article  ADS  Google Scholar 

  17. D. Kamburov, M.A. Mueed, M. Shayegan, L.N. Pfeiffer, K.W. West, K.W. Baldwin, J.J.D. Lee, R. Winkler, Fermi contour anisotropy of gaas electron-flux composite fermions in parallel magnetic fields. Phys. Rev. B 89, 085304 (2014). https://doi.org/10.1103/PhysRevB.89.085304

    Article  ADS  Google Scholar 

  18. U. Schollwöck, The density-matrix renormalization group. Rev. Mod. Phys. 77, 259 (2005). https://doi.org/10.1103/RevModPhys.77.259

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. M.P. Zaletel, R.S.K. Mong, F. Pollmann, Topological characterization of fractional quantum Hall ground states from microscopic Hamiltonians. Phys. Rev. Lett. 110, 236801 (2013). https://doi.org/10.1103/PhysRevLett.110.236801

    Article  ADS  Google Scholar 

  20. M.P. Zaletel, R.S.K. Mong, F. Pollmann, E.H. Rezayi, Infinite density matrix renormalization group for multicomponent quantum Hall systems. Phys. Rev. B 91, 045115 (2015). https://doi.org/10.1103/PhysRevB.91.045115

    Article  ADS  Google Scholar 

  21. F. Verstraete, J.I. Cirac, Matrix product states represent ground states faithfully. Phys. Rev. B 73, 094423 (2006). https://doi.org/10.1103/PhysRevB.73.094423

    Article  ADS  Google Scholar 

  22. S.M. Girvin, A.H. MacDonald, P.M. Platzman, Collective-excitation gap in the fractional quantum Hall effect. Phys. Rev. Lett. 54, 581 (1985). https://doi.org/10.1103/PhysRevLett.54.581

    Article  ADS  Google Scholar 

  23. M. Ippoliti, S.D. Geraedts, R.N. Bhatt, Numerical study of anisotropy in a composite Fermi liquid. Phys. Rev. B 95, 201104 (2017). https://doi.org/10.1103/PhysRevB.95.201104

    Article  ADS  Google Scholar 

  24. N.K. Wilkin, J.M.F. Gunn, Condensation of “composite bosons” in a rotating BEC. Phys. Rev. Lett. 84, 6 (2000). https://doi.org/10.1103/PhysRevLett.84.6

    Article  ADS  Google Scholar 

  25. N.Y. Yao, A.V. Gorshkov, C.R. Laumann, A.M. Läuchli, J. Ye, M.D. Lukin, Realizing fractional Chern insulators in dipolar spin systems. Phys. Rev. Lett. 110, 185302 (2013). https://doi.org/10.1103/PhysRevLett.110.185302

    Article  ADS  Google Scholar 

  26. N.R. Cooper, J. Dalibard, Reaching fractional quantum Hall states with optical flux lattices. Phys. Rev. Lett. 110, 185301 (2013). https://doi.org/10.1103/PhysRevLett.110.185301

    Article  ADS  Google Scholar 

  27. M. Ippoliti, S.D. Geraedts, R.N. Bhatt, Connection between Fermi contours of zero-field electrons and \(\nu =\frac{1}{2}\) composite fermions in two-dimensional systems. Phys. Rev. B 96, 045145 (2017). https://doi.org/10.1103/PhysRevB.96.045145

    Article  ADS  Google Scholar 

  28. C. Varma, Spectrum of \({}^3\text{ He }\) atoms in superfluid \({}^4\text{ He }\). Phys. Lett. A 45(4), 301 (1973). https://doi.org/10.1016/0375-9601(73)90089-3

    Article  ADS  Google Scholar 

  29. R.N. Bhatt, \(^{3}{\rm He}\) excitations in dilute mixtures with \(^{4}{\rm He}\). Phys. Rev. B 18, 2108 (1978). https://doi.org/10.1103/PhysRevB.18.2108

    Article  ADS  Google Scholar 

  30. W. Hsu, D. Pines, C.H. Aldrich, Elementary excitations in dilute mixtures of \({}^3\text{ He }\) in superfluid \({}^4\text{ He }\). Phys. Rev. B 32, 7179 (1985). https://doi.org/10.1103/PhysRevB.32.7179

    Article  ADS  Google Scholar 

  31. I. Jo, Y. Liu, L.N. Pfieffer, K.W. West, K.W. Baldwin, R. Winkler, M. Shayegan, Signatures of an annular Fermi sea. Phys. Rev. B 95, 035103 (2017). https://doi.org/10.1103/PhysRevB.95.035103

    Article  ADS  Google Scholar 

  32. G. Moore, N. Read, Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360(2), 362 (1991). https://doi.org/10.1016/0550-3213(91)90407-O

    Article  ADS  MathSciNet  Google Scholar 

  33. R. Moessner, J.T. Chalker, Exact results for interacting electrons in high Landau levels. Phys. Rev. B 54, 5006 (1996). https://doi.org/10.1103/PhysRevB.54.5006

    Article  ADS  Google Scholar 

  34. C.Y. Moon, S.H. Wei, Band gap of Hg chalcogenides: symmetry-reduction-induced band-gap opening of materials with inverted band structures. Phys. Rev. B 74, 045205 (2006). https://doi.org/10.1103/PhysRevB.74.045205

    Article  ADS  Google Scholar 

  35. P. Dziawa, B.J. Kowalski, K. Dybko, R. Buczko, A. Szczerbakow, M. Szot, E. Lusakowska, T. Balasubramanian, B.M. Wojek, M.H. Berntsen, O. Tjernberg, T. Story, Topological crystalline insulator states in \(\text{ Pb }{}_{1-x}\text{ Sn }{}_x\text{ Se }\). Nat. Mater. 11, 1023 (2012). https://doi.org/10.1038/nmat3449

    Article  ADS  Google Scholar 

  36. Y. Ohtsubo, J. Mauchain, J. Faure, E. Papalazarou, M. Marsi, P. Le Fèvre, F. Bertran, A. Taleb-Ibrahimi, L. Perfetti, Giant anisotropy of spin-orbit splitting at the bismuth surface. Phys. Rev. Lett. 109, 226404 (2012). https://doi.org/10.1103/PhysRevLett.109.226404

    Article  ADS  Google Scholar 

  37. B.E. Feldman, M.T. Randeria, A. Gyenis, F. Wu, H. Ji, R.J. Cava, A.H. MacDonald, A. Yazdani, Observation of a nematic quantum Hall liquid on the surface of bismuth. Science 354(6310), 316 (2016). https://doi.org/10.1126/science.aag1715

    Article  ADS  Google Scholar 

  38. I. Sodemann, Z. Zhu, L. Fu, Quantum Hall ferroelectrics and nematics in multivalley systems. Phys. Rev. X 7, 041068 (2017). https://doi.org/10.1103/PhysRevX.7.041068

    Article  Google Scholar 

  39. B.I. Halperin, Theory of the quantized Hall conductance. Helv. Phys. Acta 56, 75 (1983)

    Google Scholar 

  40. M. Ippoliti, S.D. Geraedts, R.N. Bhatt, Composite fermions in bands with \(N\)-fold rotational symmetry. Phys. Rev. B 96, 115151 (2017). https://doi.org/10.1103/PhysRevB.96.115151

    Article  ADS  Google Scholar 

  41. B. Yang, Z.X. Hu, C.H. Lee, Z. Papić, Generalized pseudopotentials for the anisotropic fractional quantum Hall effect. Phys. Rev. Lett. 118, 146403 (2017). https://doi.org/10.1103/PhysRevLett.118.146403

    Article  ADS  Google Scholar 

  42. A. Krishna, F. Chen, M. Ippoliti, R.N. Bhatt, Interaction-dependent anisotropy of fractional quantum Hall states. Phys. Rev. B 100, 085129 (2019). https://doi.org/10.1103/PhysRevB.100.085129

    Article  ADS  Google Scholar 

  43. J.N. Leaw, H.K. Tang, M. Trushin, F.F. Assaad, S. Adam, Universal Fermi-surface anisotropy renormalization for interacting Dirac fermions with long-range interactions. Proc. Nat. Acad. Sci. 116(52), 26431 (2019). https://doi.org/10.1073/pnas.1913096116

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from DOE BES Grant DE-SC0002140. RNB acknowledges the hospitality of the Aspen Center for Physics during the writing of this manuscript. The work presented was done in collaboration with Scott Geraedts. The infinite DMRG libraries used in this work were created by Michael Zaletel, Roger Mong and the TenPy collaboration. We thank Mansour Shayegan for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Bhatt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, R.N., Ippoliti, M. Fermi Surfaces of Composite Fermions. J Low Temp Phys 201, 25–40 (2020). https://doi.org/10.1007/s10909-020-02389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02389-3

Keywords

Navigation