Skip to main content
Log in

Perilipin 1–3 in grass carp Ctenopharyngodon idella: molecular characterization, gene structure, tissue distribution, and mRNA expression in DHA-induced lipid droplet formation in adipocytes

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Perilipin family is the main structural proteins of lipid droplet (LD) that is intracellular neutral lipid store ponds, and regulates LD assembly and formation, and is crucial for lipid metabolism. Here three paralogs of perilipin family were characterized from grass carp and their complete coding sequences (CDS) were obtained, including perilipin1, perilipin2, and perilipin3, coding peptides of 492, 454, and 419 amino acids, respectively. The alignment of the homology of grass carp perilipin deduced amino acid sequences with other teleost species showed that the homology with mammalian was less than 55%. PAT (perilipin) domain in mammalian was also predicted in grass carp perilipin 1–3 proteins. Genomic organization analysis revealed that grass carp perilipin1 contained 6 coding exons, while both perilipin2 and perilipin3 consisted of 7 coding exons. The mRNA encoding three paralogs were expressed in a wide range of tissues; perilipin1–3 were primarily expressed in adipose tissue and liver; besides, perilipin3 was also highly expressed in the heart. In vitro, 200 μM DHA increased the proportion of smaller lipid droplets effectively in fully differentiated adipocytes of grass carp. The mRNA expression of perilipin1, perilipin2, and perilipin3 was significantly increased in the adipocytes treated with DHA (P < 0.05, P < 0.01). The same responses of different paralogs in the adipocytes during DHA treatment suggest that they might play synergistic roles in the formation of LDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arrese EL, Saudale FZ, Soulages JL (2014) Lipid droplets as signaling platforms linking metabolic and cellular functions. Lipid Insights 7:7–16

    PubMed  PubMed Central  Google Scholar 

  • Bickel PE, Tansey JT, Welte MA (2009) PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta 1791(6):419–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bozza PT, Magalhães KG, Weller PF (2009) Leukocyte lipid bodies - biogenesis and functions in inflammation. Biochim Biophys Acta 1791(6):540–551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C (1997) Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 38(11):2249–2263

    CAS  PubMed  Google Scholar 

  • Bulankina AV, Deggerich A, Wenzel D, Mutenda K, Wittmann JG, Rudolph MG, Burger KN, Höning S (2009) TIP47 functions in the biogenesis of lipid droplets. J Cell Biol 185(4):641–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91

    CAS  PubMed  Google Scholar 

  • Cotillard A, Poitou C, Torcivia A, Bouillot JL, Dietrich A, Klöting N, Grégoire C, Lolmede K, Blüher M, Clément K (2014) Adipocyte size threshold matters: link with risk of type 2 diabetes and improved insulin resistance after gastric bypass. J Clin Endocrinol Metab 99(8):E1466–E1470

    CAS  PubMed  Google Scholar 

  • Covington JD, Noland RC, Hebert RC, Masinter BS, Smith SR, Rustan AC, Ravussin E, Bajpeyi S (2015) Perilipin 3 differentially regulates skeletal muscle lipid oxidation in active, sedentary, and type 2 diabetic males. J Clin Endocrinol Metab 100(10):3683–3692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ducharme NA, Bickel PE (2008) Lipid droplets in lipogenesis and lipolysis. Endocrinology 149(3):942–949

    CAS  PubMed  Google Scholar 

  • Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 105(2):141–150

    CAS  PubMed  Google Scholar 

  • Flachs P, Rossmeisl M, Kuda O, Kopecky J (2013) Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: a key to lean phenotype. Biochim Biophys Acta 1831(5):986–1003

    CAS  PubMed  Google Scholar 

  • Fukushima M, Enjoji M, Kohjima M, Sugimoto R, Ohta S, Kotoh K, Kuniyoshi M, Kobayashi K, Imamura M, Inoguchi T, Nakamuta M, Nawata H (2005) Adipose differentiation related protein induces lipid accumulation and lipid droplet formation in hepatic stellate cells. In vitro cellular & developmental biology. Animal 41(10):321–324

    CAS  Google Scholar 

  • Ganley IG, Carroll K, Bittova L, Pfeffer S (2004) Rab9 GTPase regulates late endosome size and requires effector interaction for its stability. Mol Biol Cell 15(12):5420–5430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Granneman JG, Kimler VA, Zhang H, Ye X, Luo X, Postlethwait JH, Thummel R (2017) Lipid droplet biology and evolution illuminated by the characterization of a novel perilipin in teleost fish. eLife 6:e21771

    PubMed  PubMed Central  Google Scholar 

  • Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C (1991) Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 266(17):11341–11346

    CAS  PubMed  Google Scholar 

  • Hajer GR, van Haeften TW, Visseren FL (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29(24):2959–2971

    CAS  PubMed  Google Scholar 

  • Hocsak E, Racz B, Szabo A, Mester L, Rapolti E, Pozsgai E, Javor S, Bellyei S, Gallyas F Jr, Sumegi B, Szigeti A (2010) TIP47 protects mitochondrial membrane integrity and inhibits oxidative-stress-induced cell death. FEBS Lett 584(13):2953–2960

    CAS  PubMed  Google Scholar 

  • Hong L, Zahradka P, Cordero-Monroy L, Wright B, Taylor CG (2019) Dietary docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) operate by different mechanisms to modulate hepatic steatosis and hyperinsulemia in fa/fa Zucker rats. Nutrients 11(4):917

    CAS  PubMed Central  Google Scholar 

  • Jiang HP, Serrero G (1992) Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein. Proc Natl Acad Sci U S A 89(17):7856–7860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin A, Shi XC, Liu Y, Sun J, Ji H (2018) Docosahexaenoic acid induces PPARγ-dependent preadipocytes apoptosis in grass carp Ctenopharyngodon idella. Gen Comp Endocrinol 266:211–219

    CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Kim HK, Della-Fera M, Lin J, Baile CA (2006) Docosahexaenoic acid inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 preadipocytes. J Nutr 136(12):2965–2969

    CAS  PubMed  Google Scholar 

  • Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 51(3):468–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larigauderie G, Cuaz-Pérolin C, Younes AB, Furman C, Lasselin C, Copin C, Jaye M, Fruchart JC, Rouis M (2006) Adipophilin increases triglyceride storage in human macrophages by stimulation of biosynthesis and inhibition of beta-oxidation. FEBS J 273(15):3498–3510

    CAS  PubMed  Google Scholar 

  • Lecchi C, Invernizzi G, Agazzi A, Modina S, Sartorelli P, Savoini G, Ceciliani F (2013) Effects of EPA and DHA on lipid droplet accumulation and mRNA abundance of PAT proteins in caprine monocytes. Res Vet Sci 94(2):246–251

    CAS  PubMed  Google Scholar 

  • Li H, Ruan XZ, Powis SH, Fernando R, Mon WY, Wheeler DC, Moorhead JF, Varghese Z (2005) EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism. Kidney Int 67(3):867–874

    CAS  PubMed  Google Scholar 

  • Listenberger LL, Ostermeyer-Fay AG, Goldberg EB, Brown WJ, Brown DA (2007) Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J Lipid Res 48(12):2751–2761

    CAS  PubMed  Google Scholar 

  • Liu MF, Xu GH (2006) Function of pat family proteins in the lipid metabolism. Sheng LI Ke Xue Jin Zhan 37(2):103–107

    CAS  PubMed  Google Scholar 

  • Liu P, Ji H, Li C, Chen LQ, Du ZY (2015) Morphology, mitochondrial development and adipogenic-related genes expression during adipocytes differentiation in grass carp(ctenopharyngodon idellus). Sci Bull (14):21–31

  • Londos C, Brasaemle DL, Gruia-Gray J, Servetnick DA, Schultz CJ, Levin DM, Kimmel AR (1995) Perilipin: unique proteins associated with intracellular neutral lipid droplets in adipocytes and steroidogenic cells. Biochem Soc Trans 23(3):611–615

    CAS  PubMed  Google Scholar 

  • Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nature reviews. Mol Cell Biol 7(5):373–378

    CAS  Google Scholar 

  • Martínez-Fernández L, Laiglesia LM, Huerta AE, Martínez JA, Moreno-Aliaga MJ (2015) Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins Other Lipid Mediat 121(Pt A):24–41

    PubMed  Google Scholar 

  • McManaman JL, Bales ES, Orlicky DJ, Jackman M, MacLean PS, Cain S, Crunk AE, Mansur A, Graham CE, Bowman TA, Greenberg AS (2013) Perilipin-2-null mice are protected against diet-induced obesity, adipose inflammation, and fatty liver disease. J Lipid Res 54(5):1346–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meshkani R, Adeli K (2009) Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin Biochem 42(13–14):1331–1346

    CAS  PubMed  Google Scholar 

  • Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, Oliver B, Kimmel AR (2002) Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 277(35):32253–32257

    CAS  PubMed  Google Scholar 

  • Moore HP, Silver RB, Mottillo EP, Bernlohr DA, Granneman JG (2005) Perilipin targets a novel pool of lipid droplets for lipolytic attack by hormone-sensitive lipase. J Biol Chem 280(52):43109–43120

    CAS  PubMed  Google Scholar 

  • Murphy S, Martin S, Parton RG (2009) Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta 1791(6):441–447

    CAS  PubMed  Google Scholar 

  • Nishiu J, Tanaka T, Nakamura Y (1998) Isolation and chromosomal mapping of the human homolog of perilipin (PLIN), a rat adipose tissue-specific gene, by differential display method. Genomics 48(2):254–257

    CAS  PubMed  Google Scholar 

  • Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K, Umesono K, Akanuma Y, Fujiwara T, Horikoshi H, Yazaki Y, Kadowaki T (1998) Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 101(6):1354–1361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Görgün C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science (New York, NY) 306(5695):457–461

    Google Scholar 

  • Paul A, Chan L, Bickel PE (2008) The PAT family of lipid droplet proteins in heart and vascular cells. Curr Hypertens Rep 10(6):461–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29(9):e45

  • Shi XC, Sun J, Yang Z, Li XX, Ji H, Li Y, Chang ZG, Du ZY, Chen LQ (2017) Molecular characterization and nutritional regulation of carnitine palmitoyltransferase (CPT) family in grass carp (Ctenopharyngodon idellus). Comp Biochem Physiol B Biochem Mol Biol 203:11–19

    CAS  PubMed  Google Scholar 

  • Subramanian V, Garcia A, Sekowski A, Brasaemle DL (2004) Hydrophobic sequences target and anchor perilipin A to lipid droplets. J Lipid Res 45(11):1983–1991

    CAS  PubMed  Google Scholar 

  • Sun Z, Gong J, Wu H, Xu W, Wu L, Xu D, Gao J, Wu JW, Yang H, Yang M, Li P (2013) Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat Commun 4:1594

    PubMed  Google Scholar 

  • Tamori Y, Masugi J, Nishino N, Kasuga M (2002) Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 51(7):2045–2055

    CAS  PubMed  Google Scholar 

  • Tansey JT, Sztalryd C, Gruia-Gray J, Roush DL, Zee JV, Gavrilova O, Reitman ML, Deng CX, Li C, Kimmel AR, Londos C (2001) Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci U S A 98(11):6494–6499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YC, Kuo WH, Chen CY, Lin HY, Wu HT, Liu BH, Chen CH, Mersmann HJ, Chang KJ, Ding ST (2010) Docosahexaenoic acid regulates serum amyloid A protein to promote lipolysis through down regulation of perilipin. J Nutr Biochem 21(4):317–324

    CAS  PubMed  Google Scholar 

  • Wang Y, Lu Y, Zhang Y, Ning Z, Li Y, Zhao Q, Lu H, Huang R, Xia X, Feng Q, Liang X, Liu K, Zhang L, Lu T, Huang T, Fan D, Weng Q, Zhu C, Lu Y, Li W, Wen Z, Zhou C, Tian Q, Kang X, Shi M, Zhang W, Jang S, du F, He S, Liao L, Li Y, Gui B, He H, Ning Z, Yang C, He L, Luo L, Yang R, Luo Q, Liu X, Li S, Huang W, Xiao L, Lin H, Han B, Zhu Z (2015) The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat Genet 47(6):625–631

    CAS  PubMed  Google Scholar 

  • Warnke I, Goralczyk R, Fuhrer E, Schwager J (2011) Dietary constituents reduce lipid accumulation in murine C3H10 T1/2 adipocytes: a novel fluorescent method to quantify fat droplets. Nutr Metab 8(1):30

    CAS  Google Scholar 

  • Wilfling F, Haas JT, Walther TC, Farese RV Jr (2014) Lipid droplet biogenesis. Curr Opin Cell Biol 29:39–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolins NE, Brasaemle DL, Bickel PE (2006) A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett 580(23):5484–5491

    CAS  PubMed  Google Scholar 

  • Wozniak SE, Gee LL, Wachtel MS, Frezza EE (2009) Adipose tissue: the new endocrine organ? A review article. Dig Dis Sci 54(9):1847–1856

    PubMed  Google Scholar 

  • Xu SM, Zou F, Diao ZQ, Zhang SY, Deng YQ, Zhu XT, Cui LJ, Yu JH, Zhang ZG et al (2019) Perilipin 2 and lipid droplets provide reciprocal stabilization. Biophys Rep 3:145–160

    Google Scholar 

  • Yamaguchi T, Matsushita S, Motojima K, Hirose F, Osumi T (2006) MLDP, a novel PAT family protein localized to lipid droplets and enriched in the heart, is regulated by peroxisome proliferator-activated receptor alpha. J Biol Chem 281(20):14232–14240

    CAS  PubMed  Google Scholar 

  • Zweytick D, Athenstaedt K, Daum G (2000) Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta 1469(2):101–120

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Nature Science Foundation of China (NSFC, Grant Number: 31772863) and China Postdoctoral Science Foundation Funded Project (2019M660266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Ji.

Ethics declarations

All procedures were performed in accordance with the Guide for Care and Use of Laboratory Animals and approved by the Northwest A&F University Institutional Animal Care and Use Committee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Sun, J., Bian, C. et al. Perilipin 1–3 in grass carp Ctenopharyngodon idella: molecular characterization, gene structure, tissue distribution, and mRNA expression in DHA-induced lipid droplet formation in adipocytes. Fish Physiol Biochem 46, 2311–2322 (2020). https://doi.org/10.1007/s10695-020-00857-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-020-00857-x

Keywords

Navigation