Skip to main content
Log in

Dynamic for a Stochastic Multi-Group AIDS Model with Saturated Incidence Rate

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, a stochastic multi-group AIDS model with saturated incidence rate is studied. We prove that the system is persistent in the mean under some parametric restrictions. We also obtain the sufficient condition for the existence of the ergodic stationary distribution of the system by constructing a suitable Lyapunov function. Our results indicate that the existence of ergodic stationary distribution does not rely on the interior equilibrium of the corresponding deterministic system, which greatly improves upon previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. UNAIDS/WHO, 2007 AIDS epidemic update, December 2007

  2. Blythe S P, Anderson R M. Distributed incubation and infections periods in models of transmission dynamics of human immunodeficiency virus (HIV). Ima J Math Appl Med Biol, 1988, 5(1): 1–19

    Article  MathSciNet  Google Scholar 

  3. Hyman J, Li J. An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations. Math Biosci, 2000, 167(1): 65–86

    Article  Google Scholar 

  4. Mukandavire Z, Garira W, Chiyaka C. Asymptotic properties of an HIV/AIDS model with a time delay. J Math Anal Appl, 2007, 330(2): 916–933

    Article  MathSciNet  Google Scholar 

  5. Huo H F, Feng L X. Global stability for an HIV/AIDS epidemic model with different latent stages and treatment. Appl Math Model, 2013, 37(3): 1480–1489

    Article  MathSciNet  Google Scholar 

  6. Gomes M G M, White L J, Medley G F. The reinfection threshold. J Theor Biol, 2005, 236(1): 111–113

    Article  MathSciNet  Google Scholar 

  7. Wang W, Ruan S. Bifurcation in epidemic model with constant removal rate infectives. J Math Anal Appl, 2004, 291(2): 775–793

    Article  MathSciNet  Google Scholar 

  8. Hyman J, Li J, Ann Stanley E. The differential infectivity and staged progression models for the transmission of HIV. Math Biosci, 1999, 155(2): 77–109

    Article  Google Scholar 

  9. Ma Z, Liu J, Li J. Stability analysis for differential infectivity epidemic models. Nonlinear Anal Real World Appl, 2003, 4(5): 841–856

    Article  MathSciNet  Google Scholar 

  10. Capasso V, Serio G. A generalization of the Kermack-McKendrick deterministic epidemic model. Math Biosci, 1978, 42(l1/2): 43–61

    Article  MathSciNet  Google Scholar 

  11. Wang W, Cai Y, Ding Z, et al. A stochastic differential equation SIS epidemic model incorporating Ornstein-Uhlenbeck process. Phys A, 2018, 509: 921–936

    Article  MathSciNet  Google Scholar 

  12. Cai Y, Kang Y, Banerjee M, et al. A stochastic SIRS epidemic model with infectious force under intervention strategies. J Differential Equations, 2015, 259(12): 7463–7502

    Article  MathSciNet  Google Scholar 

  13. Fu J, Jiang, D, Shi N, et al. Qualitative analysis of a stochastic ratio-dependent Holling-Tanner system. Acta Math Sci, 2018, 38B(2): 429–440

    Article  MathSciNet  Google Scholar 

  14. Mao X. Stationary distribution of stochastic population systems. Syst Control Lett, 2011, 60(6): 398–405

    Article  MathSciNet  Google Scholar 

  15. Hu G, Liu M, Wang K. The asymptotic behaviours of an epidemic model with two correlated stochastic perturbations. Appl Math Comput, 2012, 218(21): 10520–10532

    MathSciNet  MATH  Google Scholar 

  16. Settati A, Lahrouz A. Stationary distribution of stochastic population systems under regime switching. Appl Math Comput, 2014, 244: 235–243

    MathSciNet  MATH  Google Scholar 

  17. Gray A, Greenhalgh D, Hu L, et al. A Stochastic differential equation SIS epidemic model. SIAM J Appl Math, 2011, 71(3): 876–902

    Article  MathSciNet  Google Scholar 

  18. Dalal N, Greenhalgh D, Mao X. A stochastic model of AIDS and condom use. J Math Anal Appl, 2007, 325(1): 36–53

    Article  MathSciNet  Google Scholar 

  19. Ding Y, Xu M, Hu L. Asymptotic behavior and stability of a stochastic model for AIDS transmission. Appl Math Comput, 2008, 204(1): 99–108

    MathSciNet  MATH  Google Scholar 

  20. Liu H, Yang Q, Jiang D. The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences. Automatica, 2012, 48(5): 820–825

    Article  MathSciNet  Google Scholar 

  21. Liu Q, Jiang D, Hayat T, et al. Dynamical behavior of stochastic multigroup S-DI-A epidemic models for the transmission of HIV. J Franklin Inst, 2018, 355(13): 5830–5865

    Article  MathSciNet  Google Scholar 

  22. Mao X. Stochastic Differential Equations and Their Applications. Chichester: Horwood, 1997

    MATH  Google Scholar 

  23. Gard T. Introduction to Stochastic Differential Equations. New York: Marcel Dekker, 1988

    MATH  Google Scholar 

  24. Khasminskii R. Stochastic Stability of Differential Equations. 2nd ed. Berlin Heidelberg: Springer-Verlag, 2012

    Book  Google Scholar 

  25. Zhao Y, Jiang D. The threshold of a stochastic SIS epidemic model with vaccination. Appl Math Comput, 2014, 243: 718–727

    MathSciNet  MATH  Google Scholar 

  26. Higham D. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev, 2001, 43(3): 525–546

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Jiang.

Additional information

The work was supported by NSF of China (11801041, 11871473), Foudation of Jilin Province Science and Technology Development (20190201130JC), Scientific Rsearch Foundation of Jilin Provincial Education Department (JJKH20181172KJ, JJKH20190503KJ) and Natural Science Foundation of Changchun Normal University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Jiang, D. Dynamic for a Stochastic Multi-Group AIDS Model with Saturated Incidence Rate. Acta Math Sci 40, 1883–1896 (2020). https://doi.org/10.1007/s10473-020-0617-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-020-0617-4

Key words

2010 MR Subject Classification

Navigation