Skip to main content
Log in

A viscosity method in the min-max theory of minimal surfaces

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

We present the min-max construction of critical points of the area using penalization arguments. Precisely, for any immersion of a closed surface \(\Sigma \) into a given closed manifold, we add to the area Lagrangian a term equal to the \(L^{q}\) norm of the second fundamental form of the immersion times a “viscosity” parameter. This relaxation of the area functional satisfies the Palais–Smale condition for \(q>2\). This permits to construct critical points of the relaxed Lagrangian using classical min-max arguments such as the mountain pass lemma. The goal of this work is to describe the passage to the limit when the “viscosity” parameter tends to zero. Under some natural entropy condition, we establish a varifold convergence of these critical points towards a parametrized integer stationary varifold realizing the min-max value. It is proved in Pigati and Rivière (arXiv:1708.02211, 2017) that parametrized integer stationary varifold are given by smooth maps exclusively. As a consequence we conclude that every surface area minmax is realized by a smooth possibly branched minimal immersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Allard, On the first variation of a varifold, Ann. Math. (2), 95 (1972), 417–491.

    Article  MathSciNet  MATH  Google Scholar 

  2. Y. Bernard, Noether’s theorem and the Willmore functional, 2014, arXiv:1409.6894.

  3. Y. Bernard and T. Rivière, Energy quantization for Willmore surfaces and applications, Ann. Math. (2), 180 (2014), 87–136.

    Article  MathSciNet  MATH  Google Scholar 

  4. Y. Bernard and T. Rivière, Uniform regularity results for critical and subcritical surface energies, in preparation.

  5. T. H. Colding and C. De Lellis, The min-max construction of minimal surfaces, in Surveys in Differential Geometry, (Boston, MA, 2002), Surv. Differ. Geom., vol. VIII, pp. 75–107, Int. Press, Somerville, 2003.

    Google Scholar 

  6. T. H. Colding and W. P. Minicozzi II, Width and mean curvature flow, Geom. Topol., 12 (2008), 2517–2535.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. H. Colding and W. P. Minicozzi II, Width and finite extinction time of Ricci flow, Geom. Topol., 12 (2008), 2537–2586.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. De Lellis and F. Pellandini, Genus bounds for minimal surfaces arising from min-max constructions, J. Reine Angew. Math., 644 (2010), 47–99.

    MathSciNet  MATH  Google Scholar 

  9. H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153, Springer, New York, 1969.

    MATH  Google Scholar 

  10. P. Gaspar and M. A. M. Guaraco, The Allen–Cahn equation on closed manifolds, arXiv:1608.06575.

  11. M. A. M. Guaraco, Min-max for phase transitions and the existence of embedded minimal hypersurfaces, arXiv:1505.06698.

  12. M. W. Hirsch, Immersions of manifolds, Trans. Am. Math. Soc., 93 (1959), 242–276.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Hummel, Gromov’s Compactness Theorem for Pseudo-Holomorphic Curves, Progress in Mathematics, vol. 151, Birkhäuser Verlag, Basel, 1997.

    Book  MATH  Google Scholar 

  14. J. E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature, Indiana Univ. Math. J., 35 (1986), 45–71.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. E. Hutchinson and Y. Tonegawa, Convergence of phase interfaces in the van der Waals–Cahn–Hilliard theory, Calc. Var. Partial Differ. Equ., 10 (2000), 49–84.

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Imayoshi and M. Taniguchi, An Introduction to Teichmüller Spaces, Springer, Tokyo, 1992, Translated and revised from the Japanese by the authors.

    Book  MATH  Google Scholar 

  17. T. Iwaniec and G. Martin, Geometric Function Theory and Non-linear Analysis, Oxford Mathematical Monographs, The Clarendon Press/Oxford University Press, New York, 2001.

    MATH  Google Scholar 

  18. E. Kuwert, T. Lamm and Y.Li, Two dimensional curvature functionals with superquadratic growth, J. Eur. Math. Soc., 17 (2015), 3081–3111.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Lang, Fundamentals of Differential Geometry, Graduate Texts in Mathematics, vol. 191, Springer, New York, 1999.

    MATH  Google Scholar 

  20. J. Langer, A compactness theorem for surfaces with \(L^{p}\)-bounded second fundamental form, Math. Ann., 270 (1985), 223–234.

    Article  MathSciNet  MATH  Google Scholar 

  21. F. C. Liu, A Luzin type property of Sobolev functions, Indiana Univ. Math. J., 26 (1977), 645–651.

    Article  MathSciNet  MATH  Google Scholar 

  22. F. C. Marques and A. Neves, Min-max theory and the Willmore conjecture, Ann. Math. (2), 179 (2014), 683–782.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. C. Marques and A. Neves, Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, 2013, arXiv:1311.6501.

  24. F. C. Marques and A. Neves, Morse index and multiplicity of min-max minimal hypersurfaces, Camb. J. Math., 4 (2016), 463–511.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Michelat and T. Rivière, A viscosity method for the min-max construction of closed geodesics, ESAIM Control Optim. Calc. Var., 22 (2016), 1282–1324.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Mondino and T. Rivière, Willmore spheres in compact Riemannian manifolds, Adv. Math., 232 (2013), 608–676.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Mondino and T. Rivière, Immersed spheres of finite total curvature into manifolds, Adv. Calc. Var., 7 (2014), 493–538.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. B. Morrey Jr., The problem of Plateau on a Riemannian manifold, Ann. Math., 49 (1948), 807–851.

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Palais, Critical point theory and the minmax principle, in Proc. Sympos. Pure Math., vol. 15, pp. 185–212, Amer. Math. Soc, Providence, 1970.

    Google Scholar 

  30. A. Pigati and T. Rivière, The regularity of parametrized integer 2-rectifiable stationary varifolds, 2017, arXiv:1708.02211.

  31. J. T. Pitts, Existence and Regularity of Minimal Surfaces on Riemannian Manifolds, Princeton University Press/University of Tokyo Press, Princeton/Tokyo, 1981.

    Book  MATH  Google Scholar 

  32. T. Rivière, Weak immersions of surfaces with \(L^{2}\)-bounded second fundamental form, in Geometric Analysis, IAS/Park City Math. Ser., vol. 22, pp. 303–384, Amer. Math. Soc., Providence, 2016.

    Chapter  Google Scholar 

  33. T. Rivière, Analysis aspects of Willmore surfaces, Invent. Math., 174 (2008), 1–45.

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Rivière, Lipschitz conformal immersions from degenerating Riemann surfaces with \(L^{2}\)-bounded second fundamental forms, Adv. Calc. Var., 6 (2013), 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  35. T. Rivière, The regularity of Conformal Target Harmonic Maps, Calc. Var. Partial Differ. Equ., 56 (2017), 117

    Article  MathSciNet  MATH  Google Scholar 

  36. T. Rivière, Minmax methods in the calculus of variations of curves and surfaces, Course given at Columbia in May 2016, https://people.math.ethz.ch/~riviere/minmax.html.

  37. T. Rivière, Minmax hierarchies and minimal surfaces in manifolds, arXiv:1705.09848.

  38. J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. Math. (2), 113 (1981), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  39. L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983.

    MATH  Google Scholar 

  40. S. Smale, A classification of immersions of the two-sphere, Trans. Am. Math. Soc., 90 (1958), 281–290.

    Article  MathSciNet  MATH  Google Scholar 

  41. F. Smith, On the existence of embedded minimal 2-spheres in the 3-sphere, endowed with an arbitrary Riemannian metric, supervisor L. Simon, University of Melbourne, 1982.

  42. D. Stern, A natural min-max construction for Ginzburg–Landau functionals, arXiv:1612.00544.

  43. D. Stern, Energy concentration for min-max solutions of the Ginzburg–Landau equations on manifolds with \(b_{1}(M)\ne 0\), arXiv:1704.00712.

  44. A. H. Stone, Paracompactness and product spaces, Bull. Am. Math. Soc., 54 (1948), 977–982.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Struwe, The existence of surfaces of constant mean curvature with free boundaries, Acta Math., 160 (1988), 19–64.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Struwe, Positive solutions of critical semilinear elliptic equations on non-contractible planar domains, J. Eur. Math. Soc., 2 (2000), 329–388.

    Article  MathSciNet  MATH  Google Scholar 

  47. Y. Tonegawa and N. Wickramasekera, Stable phase interfaces in the van der Waals–Cahn–Hilliard theory, J. Reine Angew. Math. (Crelles J.), 2012, 191210 (2012).

    MATH  Google Scholar 

  48. X. Zhou, On the existence of min-max minimal torus, J. Geom. Anal., 20 (2010).

  49. X. Zhou, On the existence of min-max minimal surface of genus \(g\ge 2\), 2011, arXiv:1111.6206.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Rivière.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivière, T. A viscosity method in the min-max theory of minimal surfaces. Publ.math.IHES 126, 177–246 (2017). https://doi.org/10.1007/s10240-017-0094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-017-0094-z

Navigation