Skip to main content
Log in

Percolation of random nodal lines

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

We prove a Russo-Seymour-Welsh percolation theorem for nodal domains and nodal lines associated to a natural infinite dimensional space of real analytic functions on the real plane. More precisely, let \(U\) be a smooth connected bounded open set in \(\mathbf{R}^{2}\) and \(\gamma, \gamma '\) two disjoint arcs of positive length in the boundary of \(U\). We prove that there exists a positive constant \(c\), such that for any positive scale \(s\), with probability at least \(c\) there exists a connected component of the set \(\{x\in \smash{\bar{U}},\ f(sx) > 0\} \) intersecting both \(\gamma \) and \(\gamma '\), where \(f\) is a random analytic function in the Wiener space associated to the real Bargmann-Fock space. For \(s\) large enough, the same conclusion holds for the zero set \(\{x\in \smash{\bar{U}},\ f(sx) = 0\} \). As an important intermediate result, we prove that sign percolation for a general stationary Gaussian field can be made equivalent to a correlated percolation model on a lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. J. Adler and J. E. Taylor, Random Fields and Geometry, Springer, New York, 2007.

    MATH  Google Scholar 

  2. M. Aizenman and A. Burchard, Hölder regularity and dimension bounds for random curves, Duke Math. J., 99 (1998), 41.

    MATH  Google Scholar 

  3. K. S. Alexander, Boundedness of level lines for two-dimensional random fields, Ann. Probab., 24 (1996), 1653–1674.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Anantharaman, Topologie Des Hypersurfaces Nodales De Fonctions Aléatoires Gaussiennes, Astérisque, 390 (2017), 369–408.

    MATH  Google Scholar 

  5. J.-M. Azaïs and M. Wschebor, Level Sets and Extrema of Random Processes and Fields, Wiley, Hoboken, 2009.

    Book  MATH  Google Scholar 

  6. D. Basu and A. Sapozhnikov, Crossing probabilities for critical Bernoulli percolation on slabs, preprint, pp. 1–14 (2015).

  7. V. Beffara and H. Duminil-Copin, Planar percolation with a glimpse of Schramm–Loewner evolution, Probab. Surv., 10 (2013), 1–50.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Beliaev and Z. Kereta, On the Bogomolny-Schmit conjecture, J. Phys. A, Math. Theor., 46 (2013), 5.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Beliaev and S. Muirhead, Discretisation schemes for level sets of planar Gaussian fields, 2017. arXiv:1702.02134.

  10. P. Bérard, Volume des ensembles nodaux des fonctions propres du laplacien, in Bony-Sjöstrand-Meyer Seminar, 1984–1985, École Polytech, Palaiseau, 1985, Exp. No. 14, 10.

    Google Scholar 

  11. P. Bleher, B. Shiffman and S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math., 142 (2000), 351–395.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Bogomolny, R. Dubertrand and C. Schmit, SLE description of the nodal lines of random wavefunctions, J. Phys. A, Math. Theor., 40 (2007), 381–395.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Bogomolny and C. Schmit, Percolation model for nodal domains of chaotic wave functions, Phys. Rev. Lett., 88, 114102 (2002).

    Article  Google Scholar 

  14. E. Bogomolny and C. Schmit, Random wavefunctions and percolation, J. Phys. A, Math. Theor., 40 (2007), 14033–14043.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Bollobas and O. Riordan, The critical probability for random Voronoi percolation in the plane is 1/2, Probab. Theory Relat. Fields, 136 (2004), 417–468.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. R. Broadbent and J. M. Hammersley, Percolation processes, Math. Proc. Camb. Philos. Soc., 53 (1957), 629.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Camia and C. M. Newman, Two-dimensional critical percolation: the full scaling limit, Commun. Math. Phys., 268 (2006), 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Duminil-Copin, C. Hongler and P. Nolin, Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model, Commun. Pure Appl. Math., 64 (2011), 1165–1198.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Feng and S. Zelditch, Median and mean of the supremum of \(L^{2}\) normalized random holomorphic fields, J. Funct. Anal., 266 (2014), 5085–5107.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Gayet and J.-Y. Welschinger, Exponential rarefaction of real curves with many components, Publ. Math. Inst. Hautes Études Sci. (2011), 69–96. doi:10.1007/s10240-011-0033-3.

  21. D. Gayet and J.-Y. Welschinger, Betti numbers of random nodal sets of elliptic pseudo-differential operators, Asian J. Math. (2014, to appear). arXiv:1406.0934.

  22. D. Gayet and J.-Y. Welschinger, Lower estimates for the expected Betti numbers of random real hypersurfaces, J. Lond. Math. Soc. (2), 90 (2014), 105–120.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Gayet and J.-Y. Welschinger, What is the total Betti number of a random real hypersurface? J. Reine Angew. Math. (2014), 137–168. doi:10.1515/crelle-2012-0062.

  24. D. Gayet and J.-Y. Welschinger, Universal components of random nodal sets, Commun. Math. Phys. (2015, to appear). doi:10.1007/s00220-016-2595-x. arXiv:1503.01582.

  25. D. Gayet and J.-Y. Welschinger, Betti numbers of random real hypersurfaces and determinants of random symmetric matrices, J. Eur. Math. Soc., 18 (2016), 733–772.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Grimmett, Percolation, 2nd ed., Springer, Berlin, 1999.

    Book  MATH  Google Scholar 

  27. L. Gross, Abstract Wiener spaces, in Proc. 5th Berkeley Symp. Math. Stat. Probab., Univ. Calif. 1965/1966 2, Part 1, pp. 31–42, 1967.

    Google Scholar 

  28. T. E. Harris, A lower bound for the critical probability in a certain percolation process, Math. Proc. Camb. Philos. Soc., 56 (1960), 13–20.

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Hörmander, The spectral function of an elliptic operator, Acta Math., 121 (1968), 193–218.

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2, Commun. Math. Phys., 74 (1980), 41–59.

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Kostlan, On the distribution of roots of random polynomials, in From Topology to Computation: Proceedings of the Smalefest, Berkeley, CA, 1990, pp. 419–431, Springer, New York, 1993.

    Chapter  Google Scholar 

  32. T. Letendre, Expected volume and Euler characteristic of random submanifolds, J. Funct. Anal., 270 (2016), 3047–3110.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. A. Molchanov and A. K. Stepanov, Percolation in random fields. II, Theor. Math. Phys., 55 (1983), 592–599.

    Article  MathSciNet  Google Scholar 

  34. F. Nazarov and M. Sodin, On the number of nodal domains of random spherical harmonics, Am. J. Math., 131 (2009), 1337–1357.

    Article  MathSciNet  MATH  Google Scholar 

  35. F. Nazarov and M. Sodin, Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, J. Math. Phys. Anal. Geom., 12 (2016), 205–278. doi:10.15407/mag12.03.205.

    MathSciNet  MATH  Google Scholar 

  36. C. M. Newman, V. Tassion and W. Wu, Critical percolation and the minimal spanning tree in slabs, Commun. Pure Appl. Math., 1 (2017), 1–35. doi:10.1002/cpa.21714.

    MATH  Google Scholar 

  37. L. D. Pitt, Positively correlated normal variables are associated, Ann. Probab., 10 (1982), 496–499.

    Article  MathSciNet  MATH  Google Scholar 

  38. S. S. Podkorytov, The mean value of the Euler characteristic of an algebraic hypersurface, Algebra Anal., 11 (1999), 185–193.

    Google Scholar 

  39. L. Russo, A note on percolation, Z. Wahrscheinlichkeitstheor. Verw. Geb., 43 (1978), 39–48.

    Article  MathSciNet  MATH  Google Scholar 

  40. P. D. Seymour and D. J. A. Welsh, Percolation probabilities on the square lattice, Ann. Discrete Math., 3 (1978), 227–245.

    Article  MathSciNet  MATH  Google Scholar 

  41. B. Shiffman and S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Commun. Math. Phys., 200 (1999), 661–683.

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Shub and S. Smale, Complexity of Bezout’s theorem. II. Volumes and probabilities, in Computational Algebraic Geometry, Nice, 1992, Progr. Math., vol. 109, pp. 267–285, Birkhäuser, Boston, 1993.

    Chapter  Google Scholar 

  43. S. Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 239–244.

    Article  MathSciNet  MATH  Google Scholar 

  44. V. Tassion, Crossing probabilities for Voronoi percolation, Ann. Probab., 44 (2016), 3385–3398.

    Article  MathSciNet  MATH  Google Scholar 

  45. G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., 32 (1990), 99–130.

    Article  MATH  Google Scholar 

  46. S. Zelditch, Szegő kernels and a theorem of Tian, Int. Math. Res. Not. (1998), 317–331. doi:10.1155/S107379289800021X.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Gayet.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beffara, V., Gayet, D. Percolation of random nodal lines. Publ.math.IHES 126, 131–176 (2017). https://doi.org/10.1007/s10240-017-0093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-017-0093-0

Navigation