Skip to main content
Log in

Geometric presentations of Lie groups and their Dehn functions

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

We study the Dehn function of connected Lie groups. We show that this function is always exponential or polynomially bounded, according to the geometry of weights and of the 2-cohomology of their Lie algebras. Our work, which also addresses algebraic groups over local fields, uses and extends Abels’ theory of multiamalgams of graded Lie algebras, in order to provide workable presentations of these groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Abels, Kompakt definierbare topologische gruppen, Math. Ann., 197 (1972), 221–233.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Abels, Finite Presentability of \(S\) -Arithmetic Groups. Compact Presentability of Solvable Groups, Lecture Notes in Math., vol. 1261, Springer, Berlin, 1987.

    Book  MATH  Google Scholar 

  3. A. Abrams, N. Brady, P. Dani and R. Young, Homological and homotopical Dehn functions are different, Proc. Natl. Acad. Sci. USA, 110 (2013), 19206–19212.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Alonzo, Inégalités isopérimétriques et quasi-isométries, C.R. Acad. Sci. Paris. Sér., 311 (1991), 761–764.

    Google Scholar 

  5. G. Baumslag, Some aspects of groups with unique roots, Acta Math., 104 (1960), 217–303.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Baumslag, S. M. Gersten, M. Shapiro and H. Short, Automatic groups and amalgams, these proceedings, in G. Baumslag and C. F. Miller III (eds.) Algorithms and Classification in Combinatorial Group Theory, MSRI Publications, vol. 23, pp. 179–194, Springer, New York, 1992.

    Chapter  Google Scholar 

  7. G. Baumslag, C. Miller III and H. Short, Isoperimetric inequalities and the homology of groups, Invent. Math., 113 (1993), 531–560.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Bestvina and N. Brady, Morse theory and finiteness properties of groups, Invent. Math., 129 (1997), 445–470.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Bieri and R. Strebel, Almost finitely presented soluble groups, Comment. Math. Helv., 53 (1978), 258–278.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Bourbaki, Groupes et Algèbres de Lie, Éléments de Mathématique, Masson, Paris, 1981.

    MATH  Google Scholar 

  11. B. Bowditch, A short proof that a subquadratic isoperimetric inequality implies a linear one, Mich. Math. J., 42 (1995), 103–107.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Breuillard and B. Green, Approximate groups, I: the torsion-free nilpotent case, J. Inst. Math. Jussieu, 10 (2011), 37–57.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Bridson, The geometry of the word problem, in M. Bridson and S. Salamon (eds.) Invitations to Geometry and Topology, Oxford Grad. Texts Math., vol. 7, pp. 29–91, Oxford Univ. Press, London, 2002.

    Google Scholar 

  14. Y. Cornulier, Dimension of asymptotic cones of Lie groups, J. Topol., 1 (2008), 342–361.

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Cornulier, Asymptotic cones of Lie groups and cone equivalences, Ill. J. Math., 55 (2011), 237–259.

    MathSciNet  MATH  Google Scholar 

  16. P.-E. Caprace, Y. Cornulier, N. Monod and R. Tessera, Amenable hyperbolic groups, J. Eur. Math. Soc., 17 (2015), 2903–2947.

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Cornulier and R. Tessera, Metabelian groups with quadratic Dehn function and Baumslag-Solitar groups, Confluentes Math., 2 (2010), 431–443.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Cornulier and R. Tessera, Dehn function and asymptotic cones of Abels’ group, J. Topol., 6 (2013), 982–1008.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Druţu, Remplissage dans des réseaux de \(\mathbf{Q}\)-rang 1 et dans des groupes résolubles, Pac. J. Math., 185 (1998), 269–305.

    Article  MATH  Google Scholar 

  20. C. Druţu, Filling in solvable groups and in lattices in semisimple groups, Topology, 43 (2004), 983–1033.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Dwork, G. Gerotto and F. Sullivan, An Introduction to G-Functions, Annals of Mathematical Studies, vol. 133, Princeton University Press, Princeton, 1994.

    MATH  Google Scholar 

  22. D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson and W. Thurston William, Word Processing in Groups, Jones and Bartlett Publishers, Boston, 1992. xii+330 pp.

    MATH  Google Scholar 

  23. J. Fuchs, Affine Lie Algebras and Quantum Groups, Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  24. W. Fulton and J. Harris, Representation Theory. A First Course, Graduate Texts in Math., vol. 129, Springer, Berlin, 2004.

    MATH  Google Scholar 

  25. S. M. Gersten, Dehn functions and \(L_{1}\)-norms of finite presentations, in G. Baumslag and C. F. Miller III (eds.) Algorithms and Classification in Combinatorial Group Theory, MSRI Publications, vol. 23, pp. 195–224, Springer, New York, 1992.

    Chapter  Google Scholar 

  26. S. Gersten, Homological Dehn functions and the word problem, 1999, Unpublished manuscript (24 pages), http://www.math.utah.edu/~sg/Papers/df9.pdf.

  27. J. Groves and S. Hermiller, Isoperimetric inequalities for soluble groups, Geom. Dedic., 88 (2001), 239–254.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Gromov, Asymptotic invariants of infinite groups, in G. Niblo and M. Roller (eds.) Geometric Group Theory, London Math. Soc. Lecture Note Ser., vol. 182, 1993.

    Google Scholar 

  29. V. Guba and M. Sapir, On Dehn functions of free products of groups, Proc. Am. Math. Soc., 127 (1999), 1885–1891.

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Guivarc’h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. Fr., 101 (1973), 333–379.

    Article  MATH  Google Scholar 

  31. Y. Guivarc’h, Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire, Astérisque, 74 (1980), 47–98.

    MATH  Google Scholar 

  32. R. E. Howe, The Fourier transform for nilpotent locally compact groups. I, Pac. J. Math., 73 (1977), 307–327.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Éc. Norm. Supér. (3), 71 (1954), 101–190.

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Leuzinger and Ch. Pittet, On quadratic Dehn functions, Math. Z., 248 (2004), 725–755.

    Article  MathSciNet  MATH  Google Scholar 

  35. V. G. Kac, Infinite Dimensional Lie Algebras, Cambridge Univ. Press, Cambridge, 1990.

    Book  MATH  Google Scholar 

  36. C. Kassel and J.-L. Loday, Extensions centrales d’algèbres de Lie, Ann. Inst. Fourier, 32 (1982), 119–142.

    Article  MathSciNet  MATH  Google Scholar 

  37. W. Magnus, Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann., 111 (1935), 259–280.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. I. Malcev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR, Ser. Mat., 13 (1949), 9–32; English translation, Amer. Math. Soc. Transl. 39 (1951).

    MathSciNet  Google Scholar 

  39. A. I. Malcev, Generalized nilpotent algebras and their associated groups, Mat. Sb. (N.S.), 25 (1949), 347–366.

    MathSciNet  Google Scholar 

  40. K-H. Neeb and F. Wagemann, The second cohomology of current algebras of general Lie algebras, Can. J. Math., 60 (2008), 892–922.

    Article  MathSciNet  MATH  Google Scholar 

  41. D. V. Osin, Exponential radical of solvable Lie groups, J. Algebra, 248 (2002), 790–805.

    Article  MathSciNet  MATH  Google Scholar 

  42. J-P. Serre, Lie Algebras and Lie Groups, Lecture Notes in Mathematics, vol. 1500, Springer, Berlin, 1992.

    MATH  Google Scholar 

  43. I. Stewart, An algebraic treatment of Malcev’s theorems concerning nilpotent Lie groups and their Lie algebras, Compos. Math., 22 (1970), 289–312.

    MathSciNet  MATH  Google Scholar 

  44. N. Varopoulos, A geometric classification of Lie groups, Rev. Mat. Iberoam., 16 (2000), 49–136.

    Article  MathSciNet  MATH  Google Scholar 

  45. S. Wenger, Nilpotent groups without exactly polynomial Dehn function, J. Topol., 4 (2011), 141–160.

    Article  MathSciNet  MATH  Google Scholar 

  46. R. Young, Filling inequalities for nilpotent groups through approximations, Groups Geom Dyn., 7 (2013), 977–1011.

    Article  MathSciNet  MATH  Google Scholar 

  47. R. Young, The Dehn function of \(\mathrm {SL}(n;\mathbf {Z})\), Ann. Math., 177 (2013), 969–1027.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Cornulier.

Additional information

The authors are supported by ANR Project GAMME (ANR-14-CE25-0004).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornulier, Y., Tessera, R. Geometric presentations of Lie groups and their Dehn functions. Publ.math.IHES 125, 79–219 (2017). https://doi.org/10.1007/s10240-016-0087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-016-0087-3

Navigation