Skip to main content
Log in

Statistical inference for the functional quadratic quantile regression model

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In this paper, we develop statistical inference procedures for functional quadratic quantile regression model in which the response is a scalar and the predictor is a random function defined on a compact set of R. The functional coefficients are estimated by functional principal components. The asymptotic properties of the resulting estimators are established under mild conditions. In order to test the significance of the nonlinear term in the model, we propose a rank score test procedure. The asymptotic properties of the proposed test statistic are established. The proposed method provides a highly efficient and robust alternative to the least squares method, and can be conveniently implemented using existing R software package. Finally, we examine the performance of the proposed method for finite sample sizes by Monte Carlo simulation studies and illustrate it with a real data example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aneiros G, Vieu P (2015) Partial linear modelling with multi-functional covariates. Comput Stat 30:1–25

    Article  MathSciNet  Google Scholar 

  • Cai T, Hall P (2006) Prediction in functional linear regression. Ann Stat 34:2159–2179

    Article  MathSciNet  Google Scholar 

  • Cai T, Yuan M (2012) Minimax and adaptive prediction for functional linear regression. J Am Stat Assoc 107:1201–1216

    Article  MathSciNet  Google Scholar 

  • Cardot H, Ferraty F, Sarda P (2003) Spline estimators for the functional linear model. Stat Sin 13:571–591

    MathSciNet  MATH  Google Scholar 

  • Cardot H, Crambes C, Sarda P (2005) Quantile regression when the covariates are functions. Nonparametr Stat 17(7):841–856

    Article  MathSciNet  Google Scholar 

  • Chen K, Müller H (2012) Conditional quantile analysis when covariates are functions, with application to growth data. J R Stat Soc Ser B 74:67–89

    Article  MathSciNet  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, New York

    MATH  Google Scholar 

  • Hall P, Horowitz JL (2007) Methodology and convergence rates for functional linear regression. Ann Stat 35:70–91

    Article  MathSciNet  Google Scholar 

  • He X, Shi PD (1996) Bivariate tensor-product B-spline in a partly linear model. J Multivar Anal 58:162–181

    Article  MathSciNet  Google Scholar 

  • He X, Zhu ZY, Fung WK (2002) Estimation in a semiparametric model for longitudinal data with unspecified dependence structure. Biometrika 89:579–590

    Article  MathSciNet  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

    Book  Google Scholar 

  • Horváth L, Reeder R (2013) A test of significance in functional quadratic regression. Bernoulli 19:2120–2151

    Article  MathSciNet  Google Scholar 

  • Huang L, Wang H, Zheng A (2014) The M-estimator for functional linear regression model. Stat Probab Lett 88:165–173

    Article  MathSciNet  Google Scholar 

  • Huang L, Wang H et al (2015) Sieve M-estimator for semi-functional linear model. Sci China Math 58:2421–2434

    Article  MathSciNet  Google Scholar 

  • Huang L, Zhao J, Wang H, Wang S (2016) Robust shrinkage estimation and selection for functional multiple linear model through LAD loss. Comput Stat Data Anal 103:384–400

    Article  MathSciNet  Google Scholar 

  • Kato K (2012) Estimation in functional linear quantile regression. Ann Stat 40:3108–3136

    Article  MathSciNet  Google Scholar 

  • Kong D, Staicu A, Maity A (2013) Classical testing in functional linear models. N C State Univ Dept Stat Tech Rep 2647:1–23

    MATH  Google Scholar 

  • Li M, Wang KH, Maity A, Staicu A (2016) Inference in functional linear quantile regression. arXiv preprint arXiv:1602.08793

  • Lu Y, Du J, Sun Z (2014) Functional partially linear quantile regression model. Metrika 77:317–332

    Article  MathSciNet  Google Scholar 

  • Ramsay JO, Silverman BW (1997) Functional data analysis. Springer series in statistics. Springer, Berlin

    Book  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Riesz F, Nagy BS (1955) Functional analysis. Dover Publications, New York

    MATH  Google Scholar 

  • Wang H, Zhu ZY, Zhou JH (2009) Quantile regression in partially linear varying coefficient models. Ann Stat 37:3841–3866

    Article  MathSciNet  Google Scholar 

  • Wei Y, He X (2006) Conditional growth charts (with discussions). Ann Stat 34:2069–2097

    Article  Google Scholar 

  • Whitney KN (1997) Convergence rates and asymptotic normality for series estimators. J Econom 79:147–168

    Article  MathSciNet  Google Scholar 

  • Yao F, Müller HG (2010) Functional quadratic regression. Biometrika 97:49–64

    Article  MathSciNet  Google Scholar 

  • Yu P, Du J, Zhang ZZ (2017) Varying-coefficient partially functional linear quantile regression models. J Korean Stat Soc 46:462–475

    Article  MathSciNet  Google Scholar 

  • Yuan M, Cai TT (2010) A reproducing kernel Hilbert space approach to functional linear regression. Ann Stat 38:3412–3444

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the two referees for their important comments and suggestions which lead to improvement of an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianfa Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xie’s work is supported by the Science and Technology Project of Beijing Municipal Education Commission (KM201710005032, KM201910005015) and the National Natural Science Foundation of China (Nos. 11571340, 11971045). Zhang’s work is partly supported by the National Natural Science Foundation of China (Nos. 11271039, 11771032), and Education Ministry Funds for Doctor Supervisors (20131103110027).

Appendix

Appendix

In this section, we present the proofs of the results stated in Sect. 3. In what follows, for two sequences of positive numbers \(a_n\) and \(b_n\), \(a_n\lesssim b_n\) satisfies that \(a_n/b_n\) is uniformly bounded and \(a_n \asymp b_n\) if \(a_n \lesssim b_n\) and \(b_n\lesssim a_n\). Let C denote a positive constant which might take a different value at the different place. First, we give the following three lemmas which are useful to prove the main results.

Lemma 1

Let \(\eta _1\) and \(\eta _n\) be the smallest and largest eigenvalues of \(\frac{1}{n}{\varvec{X}}{\varvec{X}}^T.\) Under conditions C1–C6, we have \( \eta _1=\hat{\lambda }_m, \eta _n=\hat{\lambda }_1. \)

Lemma 2

Let \(\tau _1\) and \(\tau _n\) be the smallest and largest eigenvalues of \(\frac{1}{n}{\varvec{Z}}{\varvec{Z}}^T.\) Under conditions C1–C6, we have \( \tau _1=\lambda _m^2+o_p(1), \tau _n=\lambda _1^2+o_p(1), \)

The proof of Lemmas 1 and 2 is similar to the proof of Lemma 2 in Yu et al. (2017).

Lemma 3

Let

$$\begin{aligned} R_{i}= & {} \sum _{j=1}^{m}\langle X_{i},\hat{\phi }_{j}\rangle \beta _{j} +\sum _{k=1}^m\sum _{l=1}^m\varphi _{kl}\langle X_{i},\hat{\phi }_{l}\rangle \langle X_{i},\hat{\phi }_{k}\rangle \\&-\int _{0}^{1}\beta (t)X_i(t)dt-\int _{0}^{1}\int _{0}^{1}\varphi (t,s)X_i(t)X_i(s)dtds. \end{aligned}$$

Under conditions C1–C4 and \(C6'\), we have \( \Vert R_{i}\Vert ^2=O_p(\delta _n^2), \) where

$$\begin{aligned} \delta _n^2=n^{-\frac{2b-1}{a+2b}}+\sum \limits _{k=1}^m\sum \limits _{l=m+1}^\infty \varphi ^2_{kl}+\sum _{k=1}^m\sum \limits _{l=1}^m \varphi ^2_{kl} \frac{k^2}{n}+\sum \limits _{k=m+1}^\infty \sum \limits _{l=m+1}^\infty \varphi ^2_{kl}. \end{aligned}$$

Proof of Lemma 3

Invoking the fact \(\Vert \phi _{j}-{\hat{\phi }}_{j}\Vert ^2=O_p(n^{-1}j^2)\) and (4)–(6), one has

$$\begin{aligned} \Vert R_{i}\Vert ^{2}= & {} \left\| \sum _{j=1}^{m}\langle X_{i},\hat{\phi }_{j}\rangle \beta _{j} +\sum _{k=1}^m\sum _{l=1}^m \varphi _{kl}\langle X_{i},\hat{\phi }_{l}\rangle \langle X_{i},\hat{\phi }_{k}\rangle \right. \\&\left. -\int _{0}^{1}\beta (t)X_i(t)dt-\int _{0}^{1}\int _{0}^{1}\varphi (t,s)X_i(t)X_i(s)dtds\right\| ^{2}\\\le & {} \Vert R_{i1}\Vert ^{2}+\Vert R_{i2}\Vert ^{2}. \end{aligned}$$

where

$$\begin{aligned} R_{i1}=\sum _{j=1}^{m}\langle X_{i},\hat{\phi }_{j}\rangle \beta _{j}-\int _{0}^{1}\beta (t)X_i(t)dt, \end{aligned}$$

and

$$\begin{aligned} R_{i2}=\sum _{k=1}^m\sum _{l=1}^m \varphi _{kl}\langle X_{i},\hat{\phi }_{l}\rangle \langle X_{i},\hat{\phi }_{k}\rangle -\int _{0}^{1}\int _{0}^{1}\varphi (t,s)X_i(t)X_i(s)dtds. \end{aligned}$$

First, we consider \(R_{i1}.\)

$$\begin{aligned} \Vert R_{i1}\Vert ^{2}= & {} \left\| \sum _{j=1}^{m}\langle X_{i},\hat{\phi }_{j}\rangle \beta _{j}-\int _{0}^{1}\beta (t)X_i(t)dt\right\| ^2\\= & {} \left\| \sum _{j=1}^{m}\langle X_{i},\hat{\phi }_{j}\rangle \beta _{j}-\sum _{j=1}^{\infty }\langle X_{i},\phi _{j}\rangle \beta _{j}\right\| ^{2}\\\le & {} \left\| \sum _{j=1}^{m}\langle X_{i},\hat{\phi }_{j}\rangle \beta _{j}-\sum _{j=1}^{m}\langle X_{i},\phi _{j}\rangle \beta _{j}\right\| ^{2} +\left\| \sum _{j=m+1}^{\infty }\langle X_{i},\phi _{j}\rangle \beta _{j}\right\| ^{2}\\\le & {} \sum _{j=1}^{m}\left\| \hat{\phi }_{j}-\phi _{j}\right\| ^{2}|\beta _{j}|^{2}+\sum _{j=m+1}^{\infty }|\beta _{j}|^{2}\\= & {} \sum _{j=1}^{m}O_{p}\left( n^{-1} j^{2-2b}\right) +\sum _{j=m+1}^{\infty }j^{-2b}\\= & {} O_{p_{}}\left( n^{-\frac{2b-1}{a+2b}}\right) +O\left( n^{-\frac{2b-1}{a+2b}}\right) \\= & {} O_{p}\left( n^{-\frac{2b-1}{a+2b}}\right) . \end{aligned}$$

Next, we consider \(R_{i2}\).

$$\begin{aligned} \Vert R_{i2}\Vert ^{2}= & {} \left\| \sum _{k=1}^m\sum _{l=1}^m \varphi _{kl}\langle X_{i},\hat{\phi }_{l}\rangle \langle X_{i},\hat{\phi }_{k}\rangle -\int _{0}^{1}\int _{0}^{1}\varphi (t,s)X_i(t)X_i(s)dtds\right\| ^{2}\\= & {} \left\| \sum _{k=1}^m\sum _{l=1}^m \varphi _{kl}\langle X_{i},\hat{\phi }_{l}\rangle \langle X_{i},\hat{\phi }_{k}\rangle -\sum _{k=1}^\infty \sum _{l=1}^\infty \varphi _{kl}\langle X_{i}, {\phi }_{l}\rangle \langle X_{i}, {\phi }_{k}\rangle \right\| ^{2}\\= & {} \left\| \sum _{k=1}^m\sum _{l=1}^m \varphi _{kl}\langle X_{i},\hat{\phi }_{l}\rangle \langle X_{i},\hat{\phi }_{k}\rangle -\sum _{k=1}^m\sum _{l=1}^m \varphi _{kl}\langle X_{i}, {\phi }_{l}\rangle \langle X_{i}, {\phi }_{k}\rangle \right\| ^{2}\\&+\left\| \sum _{k=1}^m\sum _{l=m+1}^\infty \varphi _{kl}\langle X_{i},{\phi }_{l}\rangle \langle X_{i},{\phi }_{k}\rangle \right\| ^{2} +\left\| \sum _{k=m+1}^\infty \sum _{l=1}^m \varphi _{kl}\langle X_{i}, {\phi }_{l}\rangle \langle X_{i}, {\phi }_{k}\rangle \right\| ^{2}\\&+\left\| \sum _{k=m+1}^\infty \sum _{l= m+1}^\infty \varphi _{kl}\langle X_{i}, {\phi }_{l}\rangle \langle X_{i}, {\phi }_{k}\rangle \right\| ^{2}\\= & {} R_{i21}+R_{i22}+R_{i23}+R_{i24}. \\ R_{i21}= & {} \left\| \sum _{k=1}^m\sum _{l=1}^m\varphi _{kl}\langle X_{i},\hat{\phi }_{l}\rangle \langle X_{i},\hat{\phi }_{k}\rangle -\sum _{k=1}^m\sum _{l=1}^m{\varphi }_{kl}\langle X_{i}, {\phi }_{l}\rangle \langle X_{i}, {\phi }_{k}\rangle \right\| ^{2}\\= & {} \left\| \sum _{k=1}^m\sum _{l=1}^m{\varphi }_{kl}\langle X_{i},\hat{\phi }_{l}\rangle \langle X_{i},\hat{\phi }_{k}\rangle -\sum _{k=1}^m\sum _{l=1}^m{\varphi }_{kl}\langle X_{i}, \hat{\phi }_{l}\rangle \langle X_{i}, {\phi }_{k}\rangle \right\| ^{2}\\&+\left\| \sum _{k=1}^m\sum _{l=1}^m{\varphi }_{kl}\langle X_{i},\hat{\phi }_{l}\rangle \langle X_{i},{\phi }_{k}\rangle -\sum _{k=1}^m\sum _{l=1}^m{\varphi }_{kl}\langle X_{i}, {\phi }_{l}\rangle \langle X_{i}, {\phi }_{k}\rangle \right\| ^{2}\\\le & {} \sum _{k=1}^m\sum _{l=1}^m{\varphi }^2_{kl}\Vert \langle X_{i}, \hat{\phi }_{l}\rangle \Vert ^2 \Vert \langle X_{i},\hat{\phi }_{k}\rangle -\langle X_{i}, {\phi }_{k}\rangle \Vert ^{2}\\&+\sum _{k=1}^m\sum _{l=1}^m{\varphi }^2_{kl}\Vert \langle X_{i}, {\phi }_{k}\rangle \Vert ^2 \Vert \langle X_{i},\hat{\phi }_{l}\rangle -\langle X_{i}, {\phi }_{l}\rangle \Vert ^{2}\\= & {} 2\sum _{k=1}^m\sum \limits _{l=1}^m{\varphi }^2_{kl} \frac{k^2}{n}. \end{aligned}$$

Thus \(R_{i21}=O_p\left( \sum _{k=1}^m\sum _{l=1}^m \varphi ^2_{kl} \frac{k^2}{n}\right) \). Similarly, \(R_{i22}=R_{i23}=O_p\left( \sum _{k=1}^m\right. \left. \sum _{l=m+1}^\infty {\varphi }^2_{kl}\right) ,\) and \(R_{i24}=O_p\left( \sum _{k=m+1}^\infty \sum _{l=m+1}^\infty {\varphi }^2_{kl}\right) .\) Therefore, we have

$$\begin{aligned} \Vert R_{i2}\Vert ^2=O_p\left( \sum \limits _{k=1}^m\sum \limits _{l=m+1}^\infty {\varphi }^2_{kl}\right) +O_p\left( \sum _{k=1}^m\sum \limits _{l=1}^m{\varphi }^2_{kl} \frac{k^2}{n}\right) +O_p\left( \sum \limits _{k=m+1}^\infty \sum \limits _{l=m+1}^\infty {\varphi }^2_{kl}\right) . \end{aligned}$$

According the convergence of rate of \(R_{i1}\) and \(R_{i2}\), one has \(\Vert R_{i}\Vert ^2=O_{p}\left( \delta _n^2\right) .\)\(\square \)

Lemma 4

Under \(H_0\) and conditions C1–C5 and \(C6'\), we have

$$\begin{aligned} \sup \limits _{\Vert {\hat{\beta }}-\beta _0\Vert< n^{-\frac{ b-a}{a+2b} } ,\Vert {\hat{\mu }}-\mu _0\Vert < n^{-\frac{ b-a}{a+2b} }} \Vert {\varvec{V}}_n^*-{\varvec{V}}_n\Vert =o_p(n), \end{aligned}$$
(15)

where \( {\varvec{V}}_n^*=(1-\tau )\tau {\varvec{H}}^T {\varvec{H}}. \)

The proof of Lemma 4 is similar to these of He et al. (2002).

Lemma 5

Under \(H_0\) and conditions C1–C5 and \(C6'\), we have

$$\begin{aligned} \sup \limits _{\Vert {\hat{\beta }}-\beta _0\Vert< n^{-\frac{ b-a}{a+2b} } ,\Vert {\hat{\mu }}-\mu _0\Vert < n^{-\frac{ b-a}{a+2b} }} \Vert {\varvec{S}}_n^*-{\varvec{S}}_n\Vert =o_p(n^{1/2}), \end{aligned}$$

where \( {\varvec{S}}_n^*=(I-{\varvec{P}}){\varvec{Z}} {\varvec{\psi }}({\varvec{\varepsilon }}). \)

The proof of Lemma 5 is similar to the Theorem 4.1 in Wei and He (2006).

Proof of Theorem 1

Denote \({\varvec{P}}_Z= {\varvec{Z}}({\varvec{Z}}^T{\varvec{Z}})^{-1}{\varvec{Z}}^T, {\varvec{X}}^*=({\varvec{I}}-{\varvec{P}}_Z){\varvec{X}}\), \({\varvec{X}}^* =({\varvec{X}}^*_1,\dots ,{\varvec{X}}^*_n)^T\), \({\varvec{S}}_n={{\varvec{X}}^*}^T{\varvec{X}}^*\), \({\varvec{\beta }}=(\beta _1,\dots ,\beta _m)^T\), \({\varvec{\gamma }}=\text {vech}(\{\varphi _{kl}(2-\delta _{kl}),1\le k \le l\le m \}^T).\)

Let

$$\begin{aligned} {\varvec{\theta }}\left( \begin{array}{c} \mu \\ {\varvec{\beta }} \\ {\varvec{\gamma }} \end{array} \right) =\left( \begin{array}{c} \theta _{1}\\ {\varvec{\theta }}_{2}\\ {\varvec{\theta }}_{3} \end{array} \right) =\left( \begin{array}{c} \sqrt{n}(\mu -\mu _0)\\ {\varvec{S}}_{n}^{\frac{1}{2}}({\varvec{\beta }}-{\varvec{\beta }}_{0}) \\ {\varvec{H}}_{m}^{\frac{1}{2}}({\varvec{\gamma }}-{\varvec{\gamma }}_{0})+{\varvec{H}}_{m}^{-\frac{1}{2}}{\varvec{Z}}{\varvec{X}}(\beta -\beta _{0}) \end{array} \right) , \end{aligned}$$

where \({\varvec{H}}_{m}={\varvec{Z}}^{T}{\varvec{Z}}\). Let \(\hat{{\varvec{\theta }}}={\varvec{\theta }}({\hat{\mu }},\hat{{\varvec{\beta }}},\hat{{\varvec{\gamma }}})=({\hat{\theta }}_1,\hat{{\varvec{\theta }}}_{1}^{T},\hat{{\varvec{\theta }}}_{2}^{T})^{T}.\) Notice that the suffix 0 here means the true value of the parameter, and for simplicity we omit it where there is no misunderstanding. Now we show \(\Vert \hat{{\varvec{\theta }}}\Vert =O_{p}( \frac{1}{\lambda _m})\). To do so, we standardize \(\tilde{{\varvec{X}}}_{i}={\varvec{S}}_n^{-\frac{1}{2}} {\varvec{X}}_i^*\), \(\tilde{{\varvec{Z}}}_{i}={\varvec{H}}_m^{-\frac{1}{2}} {\varvec{Z}}_i\), and let \(R_i\) be defined in Lemma 3, then one has

$$\begin{aligned}&\sum _{i=1}^n\rho _\tau \left( Y_i-\mu -\sum _{k=1}^m {\hat{x}}_{ik}\beta _k-\sum _{k=1}^m\sum _{l=k}^m(2-\delta _{kl})\varphi _{kl}{\hat{x}}_{ik}{\hat{x}}_{il}\right) \\&\quad =\sum _{i=1}^n\rho _\tau \left( Y_i-\mu -{\varvec{X}}_i^T{\varvec{\beta }}-{\varvec{Z}}_i^T{\varvec{\gamma }}\right) \\&\quad =\sum _{i=1}^n\rho _\tau \left( \varepsilon _i-\theta _1/\sqrt{n}-\tilde{{\varvec{X}}}_{i}^{T}{\varvec{\theta }}_{2}-\tilde{{\varvec{Z}}}_{i}^{T}{\varvec{\theta }}_{3}-R_{i})\right) \end{aligned}$$

which is minimized at \(\hat{{\varvec{\theta }}}\).

Invoking Lemmas 1 and 2, for any \(\kappa >0\), similar arguments to these of Lemma 1 of Cardot et al. (2005), there exists \(L_{\kappa }\) such that

$$\begin{aligned}&P\left\{ \inf \limits _{\Vert {\varvec{\theta }}\Vert>L_{\kappa }\lambda _m}\sum _{i=1}^{n}\rho _{\tau }\left( \varepsilon _i-\theta _1/\sqrt{n}-\tilde{{\varvec{X}}}_{i}^{T}{\varvec{\theta }}_{2}-\tilde{{\varvec{Z}}}_{i}^{T}{\varvec{\theta }}_{3}-R_{i}\right)>\sum _{i=1}^{n}\rho _{\tau }(\varepsilon _{i} -R_{i})\right\} \\&\quad >1-\kappa . \end{aligned}$$

On the other hand, we have

$$\begin{aligned}&\sum _{i=1}^{n}\rho _{\tau }\left( \varepsilon _{i}-{\hat{\theta }}_1/\sqrt{n} -\tilde{{\varvec{X}}}_{i}^{T}\hat{{\varvec{\theta }}}_{2}-\tilde{{\varvec{Z}}}_{i}^{T}{\varvec{\hat{\theta }}}_{3}-R_{i}\right) \nonumber \\&\quad =\inf \limits _{{\varvec{\theta }}\in R^{m(m+1)/2}} \sum _{i=1}^{n}\rho _{\tau }\left( \varepsilon _i-\theta _1/\sqrt{n}-\tilde{{\varvec{X}}}_{i}^{T}{\varvec{\theta }}_{2}-\tilde{{\varvec{Z}}}_{i}^{T}{\varvec{\theta }}_{3}-R_{i}\right) . \end{aligned}$$
(16)

Thus, we have

$$\begin{aligned} \sum _{i=1}^{n}\rho _{\tau }\left( \varepsilon _{i}-{\hat{\theta }}_1/\sqrt{n} -\tilde{{\varvec{X}}}_{i}^{T}\hat{{\varvec{\theta }}}_{2}-\tilde{{\varvec{Z}}}_{i}^{T}{\varvec{\hat{\theta }}}_{3}-R_{i}\right) < \sum _{i=1}^{n}\rho _{\tau }(\varepsilon _i-R_{i}). \end{aligned}$$

Combining Eq. (16), one has

$$\begin{aligned}&P\left\{ \inf \limits _{\Vert {\varvec{\theta }}\Vert>\frac{L_{\kappa }}{\lambda _{m}}}\sum _{i=1}^{n}\rho _{\tau }\left( \varepsilon _i-\theta _1/\sqrt{n}-\tilde{{\varvec{X}}}_{i}^{T}{\varvec{\theta }}_{2}-\tilde{{\varvec{Z}}}_{i}^{T}{\varvec{\theta }}_{3}-R_{i}\right) \right. \\&\quad \left.> \sum _{i=1}^{n}\rho _{\tau }\left( \varepsilon _{i}-{\hat{\theta }}_1/\sqrt{n} -\tilde{{\varvec{X}}}_{i}^{T}\hat{{\varvec{\theta }}}_{2}-\tilde{{\varvec{Z}}}_{i}^{T}{\varvec{\hat{\theta }}}_{3}-R_{i}\right) \right\} >1-\kappa , \end{aligned}$$

Thus, \(\Vert \hat{{\varvec{\theta }}}\Vert =O_{p}\left( \frac{1}{\lambda _m}\right) .\) By the definition of \({\varvec{\theta }}\), we have \(\Vert \hat{\mu }-\mu _0\Vert =O_{p}\left( {\frac{\lambda _m}{\sqrt{n}}} \right) .\)

Combining Lemma 1 and the definition of \(\hat{{\varvec{\theta }}}\), one has

$$\begin{aligned} \Vert \hat{{\varvec{\beta }}}-{\varvec{\beta }}_{0}\Vert =\left\| {\varvec{S}}_{n}^{-\frac{1}{2}}\hat{{\varvec{\theta }}}_{2}\right\| =O_{p}\left( (\lambda _m n)^{-\frac{1}{2}}\Vert \hat{{\varvec{\theta }}}_{2}\Vert \right) =O_{p}\left( {\frac{1}{ \sqrt{\lambda _m^3 n}}} \right) . \end{aligned}$$

By Lemmas 1 and 2, we have

$$\begin{aligned} \Vert \hat{{\varvec{\gamma }}}-{\varvec{\gamma }}_{0}\Vert \le \frac{1}{\lambda _m\sqrt{n}}\left\| {\hat{ {\varvec{\theta }}}}_{3}\right\| +\frac{1}{\lambda _m\sqrt{n}}\left\| {\varvec{H}}_{m}^{-\frac{1}{2}}{\varvec{Z}}{\varvec{X}}(\hat{{\varvec{\beta }}}-{\varvec{\beta }}_{0})\right\| =O_{p}\left( {\frac{1}{ \lambda _m^2\sqrt{n}}} \right) . \end{aligned}$$

Now, we consider the convergence rate of the proposed estimators \({\hat{\beta }}(t)\) and \({\hat{\varphi }}(t,s).\)

$$\begin{aligned} \Vert \hat{\beta } -\beta _{0} \Vert ^{2}= & {} \left\| \sum _{j=1}^{m}\hat{\beta }_{j}\hat{\phi }_{j}-\sum _{j=1}^{\infty }\beta _{j0}\phi _{j}\right\| ^{2}\\\le & {} 2\left\| \sum _{j=1}^{m}\hat{\beta }_{j}\hat{\phi }_{j}-\sum _{j=1}^{m}\beta _{j0}\phi _{j}\right\| ^{2} +2\left\| \sum _{j=m+1}^{\infty }\beta _{j0}\phi _{j}\right\| ^{2}\\\le & {} 4\left\| \sum _{j=1}^{m}(\hat{\beta }_{j}-\beta _{j0})\hat{\phi }_{j}\right\| ^{2} +4\left\| \sum _{j=1}^{m}\beta _{j0}(\hat{\phi }_{j}-\phi _{j})\right\| ^{2} +2\sum _{j=m+1}^{\infty }\beta _{j0}^{2}\\= & {} R_{n1}+R_{n2}+R_{n3}. \end{aligned}$$

Now we consider \(R_{n1}\), by the fact that the sequences \(\{{\hat{\phi }}_j\}\) forms an orthonormal basis in \(L^2([0, 1])\), one has

$$\begin{aligned} R_{n1}= & {} \left\| \sum _{j=1}^{m}(\hat{\beta }_{j}-\beta _{j0})\hat{\phi }_{j}\right\| ^{2}\\\le & {} \sum _{j=1}^{m}(\hat{\beta }_{j}-\beta _{j0})^{2}\\\le & {} \Vert \hat{{\varvec{\beta }}} -{{\varvec{\beta }}_0}\Vert ^{2}. \end{aligned}$$

Next we consider \(R_{n2}\) and \(R_{n3}\),

$$\begin{aligned} R_{n2}\le & {} m\sum _{j=1}^{m}\Vert \hat{\phi }_{j}-\phi _{j}\Vert ^{2}\beta _{j0}^{2}\le n^{-1}m\sum _{j=1}^{m}j^{2}\beta _{j0}^{2}\\= & {} O_{p}\left( n^{-1}m\sum _{j=1}^{m}j^{2-2b}\right) =O_{p}\left( n^{-\frac{a+3b-1}{a+2b}}\right) , \end{aligned}$$

and

$$\begin{aligned} R_{n3}= 2\sum _{j=m+1}^{\infty }\beta _{j0}^{2}\le C\sum _{j=m+1}^{\infty }j^{-2b}=O\left( n^{-\frac{2b-1}{a+2b}}\right) . \end{aligned}$$

Therefore, one has

$$\begin{aligned} \Vert \hat{\beta }-\beta _0\Vert ^{2}=O_{p}\left( n^{-\frac{2(b-a)}{a+2b}}\right) . \end{aligned}$$

Note that

$$\begin{aligned} \Vert \hat{\varphi } -\varphi _{0} \Vert ^{2}= & {} \int _0^1\int _0^1\left( \sum _{k=1}^m\sum _{l=1}^{m}\hat{\varphi }_{kl}\hat{\phi }_{k}(t)\hat{\phi }_{l}(t)- \sum _{k=1}^\infty \sum _{l=1}^{\infty }{\varphi }_{kl}{\phi }_{k}(t){\phi }_{l}(t)\right) ^{2}dtds\\= & {} \int _0^1\int _0^1\left( \sum _{k=1}^m\sum _{l=1}^{m}\hat{\varphi }_{kl}\hat{\phi }_{k}(t)\hat{\phi }_{l}(t)- \sum _{k=1}^m\sum _{l=1}^{m}{\varphi }_{kl}{\phi }_{k}(t){\phi }_{l}(t)\right) ^{2}dtds\\&+\int _0^1\int _0^1\left( \sum _{k=1}^m\sum _{l=m+1}^{\infty }{\varphi }_{kl}{\phi }_{k}(t){\phi }_{l}(t)\right) ^{2}dtds\\&+\int _0^1\int _0^1\left( \sum _{k=m+1}^\infty \sum _{l=1}^{m}{\varphi }_{kl}{\phi }_{k}(t){\phi }_{l}(t)\right) ^{2}dtds\\&+\int _0^1\int _0^1\left( \sum _{k=m+1}^\infty \sum _{l=m+1}^{\infty }{\varphi }_{kl}{\phi }_{k}(t){\phi }_{l}(t)\right) ^{2}dtds\\= & {} T_{n1}+T_{n2}+T_{n3}+T_{n4}. \end{aligned}$$

Firstly, we consider \(T_{n1}.\)

$$\begin{aligned} T_{n1}= & {} \int _0^1\int _0^1\left( \sum _{k=1}^m\sum _{l=1}^{m}\hat{\varphi }_{kl}\hat{\phi }_{k}(t)\hat{\phi }_{l}(s)- \sum _{k=1}^m\sum _{l=1}^{m}{\varphi }_{kl}{\phi }_{k}(t){\phi }_{l}(s)\right) ^{2}dtds\\\le & {} \int _0^1\int _0^1\left( \sum _{k=1}^m\sum _{l=1}^{m}\hat{\varphi }_{kl}\hat{\phi }_{k}(t)\hat{\phi }_{l}(s)- \sum _{k=1}^m\sum _{l=1}^{m}{\varphi }_{kl}\hat{\phi }_{k}(t)\hat{\phi }_{l}(s)\right) ^{2}dtds \\&+\int _0^1\int _0^1\left( \sum _{k=1}^m\sum _{l=1}^{m}{\varphi }_{kl}\hat{\phi }_{k}(t)\hat{\phi }_{l}(s)- \sum _{k=1}^m\sum _{l=1}^{m}{\varphi }_{kl}\hat{\phi }_{k}(t){\phi }_{l}(s)\right) ^{2}dtds \\&+\int _0^1\int _0^1\left( \sum _{k=1}^m\sum _{l=1}^{m}{\varphi }_{kl}\hat{\phi }_{k}(t){\phi }_{l}(s)- \sum _{k=1}^m\sum _{l=1}^{m}{\varphi }_{kl}{\phi }_{k}(t){\phi }_{l}(s)\right) ^{2}dtds \\= & {} T_{n11}+T_{n12}+T_{n13} \end{aligned}$$

For \(T_{n11},\) by the orthogonality of \(\{\hat{\phi }_{k}\},\) we have

$$\begin{aligned} T_{n11}= & {} \int _0^1\int _0^1\left( \sum _{k=1}^m\sum _{l=1}^{m}\hat{\varphi }_{kl}\hat{\phi }_{k}(t)\hat{\phi }_{l}(s)- \sum _{k=1}^m\sum _{l=1}^{m}{\varphi }_{kl}\hat{\phi }_{k}(t)\hat{\phi }_{l}(s)\right) ^{2}dtds\\= & {} \sum _{k=1}^m\sum _{l=1}^{m}(\hat{\varphi }_{kl}-{\varphi }_{kl})^2\\= & {} \Vert \hat{{\varvec{\gamma }}}-\gamma \Vert ^2\\= & {} O_p\left( n^{-\frac{(2b-3a)}{a+2b}}\right) \end{aligned}$$

For \(T_{n12},\) according to the Cauchy–Schwarz inequality, we have

$$\begin{aligned} T_{n12}= & {} \int _0^1\int _0^1\left( \sum _{k=1}^m\sum _{l=1}^{m}{\varphi }_{kl}\hat{\phi }_{k}(t)\hat{\phi }_{l}(s)- \sum _{k=1}^m\sum _{l=1}^{m}{\varphi }_{kl}\hat{\phi }_{k}(t){\phi }_{l}(s)\right) ^{2}dtds \\= & {} \sum _{k=1}^m\int _0^1\left( \sum _{l=1}^{m}{\varphi }_{kl}(\hat{\phi }_{l}(s)- {\phi }_{l}(s))\right) ^{2}ds \\\le & {} \sum _{k=1}^m\sum _{l=1}^{m}{\varphi }_{kl}^2\sum _{r=1}^{m}\int _0^1 \left( \hat{\phi }_{r}(s)- {\phi }_{r}(s)\right) ^{2}ds \\= & {} O_p\left( \frac{m^3}{n} \right) \end{aligned}$$

Similar to \(T_{n12},\) we have \(T_{n12}=O_p\left( \frac{m^3}{n} \right) .\) Therefore, we conclude that

$$\begin{aligned} T_{n1}=O_p\left( \frac{m^3}{n} \right) +O_p\left( n^{-\frac{(2b-3a)}{a+2b}}\right) =O_p\left( n^{-\frac{(2b-3a)}{a+2b}}\right) . \end{aligned}$$

Via some elementary but tedious algebra, we can conclude that

$$\begin{aligned} T_{n2}= & {} O_p\left( \sum _{k=1}^m\sum _{l=m+1}^{\infty }{\varphi }_{kl}^2 \right) . \\ T_{n3}= & {} O_p\left( \sum _{k=m+1}^\infty \sum _{l=1}^{m}{\varphi }_{kl}^2 \right) . \\ T_{n4}= & {} O_p\left( \sum _{k=m+1}^\infty \sum _{l=m+1}^{\infty }{\varphi }_{kl}^2 \right) . \end{aligned}$$

Thus, we have

$$\begin{aligned} \Vert \hat{\varphi } -\varphi _{0} \Vert ^{2}= & {} O_p\left( n^{-\frac{(2b-3a)}{a+2b}}\right) +O_p\left( \sum _{k=1}^m\sum _{l=m+1}^{\infty }{\varphi }_{kl}^2 \right) +O_p\left( \sum _{k=m+1}^\infty \sum _{l=1}^{m}{\varphi }_{kl}^2 \right) \\&+O_p\left( \sum _{k=m+1}^\infty \sum _{l=m+1}^{\infty }{\varphi }_{kl}^2 \right) . \end{aligned}$$

Next we will show the asymptotic normality of \(\hat{ \theta }_1\). Let \( \theta _{1}^{*}=\frac{1}{f(0)\sqrt{n}} \sum _{i=0}^{n} \psi _{\tau }(\varepsilon _{i})\), according to the Lindeberg–Feller theorem, \(\theta _{1}^{*}\) is asymptotically normal with variance-covariance \(\frac{\tau (1-\tau )}{f^{2}(0)}\).

On the other hand, following arguments similar to those used in He and Shi (1996), we can establish that \(\Vert \theta _{1}^{*}-\hat{ \theta }_{1}\Vert =o_{p}(1).\) Combining this, we conclude that

$$\begin{aligned} \sqrt{n}(\hat{\mu } -\mu _{0})\rightarrow N\left( 0,\frac{\tau (1-\tau )}{f^{2}(0)}\right) . \end{aligned}$$

This completes the proof of Theorem 1. \(\square \)

Proof of Theorem 2

We first define

$$\begin{aligned} T_n^*={{\varvec{S}}_n^*}^T{{\varvec{V}}_n^*}^{-1}{\varvec{S}}_n^*. \end{aligned}$$

By the central limit theorem, we have

$$\begin{aligned} A_n{{\varvec{V}}_n^*}^{-1/2}{\varvec{S}}_n^* {\mathop {\longrightarrow }\limits ^{L}}N(0,G) \end{aligned}$$

where \(A_n\) is a \(q\times m\) matrix such that \(A_nA^T_n\rightarrow G\), and G is a \(q\times q\) nonegative symmetric matrix. By the definition of the chi-squared distribution, one has

$$\begin{aligned} {{\varvec{S}}_n^*}^T{{\varvec{V}}_n^*}^{-1/2}{A_n}^{1/2}G^{-1}A_n{{\varvec{V}}_n^*}^{-1/2}{\varvec{S}}_n^* {\mathop {\longrightarrow }\limits ^{L}}\chi ^2(q), \end{aligned}$$
(17)

Combining (17) with the continuous mapping theorem, one has

$$\begin{aligned} \frac{T_n^*-\frac{m(m+1)}{2}}{\sqrt{m(m+1)}}{\mathop {\longrightarrow }\limits ^{L}}N(0,1). \end{aligned}$$
(18)

According to Lemmas 4 and 5, we have

$$\begin{aligned} \Vert T_n^*-T_n\Vert =o_p(1). \end{aligned}$$

Combining this with (18), we can conclude that

$$\begin{aligned} \frac{T_n-\frac{m(m+1)}{2}}{\sqrt{m(m+1)}}{\mathop {\longrightarrow }\limits ^{L}}N(0,1). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, G., Xie, T. & Zhang, Z. Statistical inference for the functional quadratic quantile regression model. Metrika 83, 937–960 (2020). https://doi.org/10.1007/s00184-020-00763-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-020-00763-5

Keywords

Mathematics Subject Classification

Navigation