Skip to main content
Log in

Bayesian robust estimation of partially functional linear regression models using heavy-tailed distributions

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Functional linear regression (FLR) is a popular method that studies the relationship between a scalar response and a functional predictor. A common estimation procedure for the FLR model is using maximum likelihood by assuming normal distributions for measurement errors; however this method may make inferences vulnerable to the presence of outliers. In this article, we introduce a robust estimation method of partially functional linear model by considering a class of scale mixtures of normal (SMN) distributions for measurement errors. Due to intractable closed form of likelihood function with the SMN distributions, a Bayesian framework is adopted and an MCMC algorithm is developed to carry out posterior inference on model parameters. The finite sample performance of our proposed method is evaluated by using some simulation studies and a real dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrews DF, Mallows CL (1974) Scale mixtures of normal distributions. J R Stat Soc Ser B 36:99–102

    MathSciNet  MATH  Google Scholar 

  • Azzalini A, Capitanio A (2014) The skew-normal and related families. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  • Brown PJ, Fearn T, Vannucci M (2001) Bayesian wavelet regression on curves with application to a spectroscopic calibration problem. J Am Stat Ass 96:398–408

    MathSciNet  MATH  Google Scholar 

  • Cabral CRB, Lachos VH, Madruga MR (2012) Bayesian analysis of skew-normal independent linear mixed models with heterogeneity in the random-effects population. J Stat Plan Inference 142:181–200

    MathSciNet  MATH  Google Scholar 

  • Cai T, Hall P (2006) Prediction in functional linear regression. Ann Stat 34:2159–2179

    MathSciNet  MATH  Google Scholar 

  • Cardot H, Ferraty F, Sarda P (2003) Spline estimators for the functional linear model. Stat Sin 13:571–591

    MathSciNet  MATH  Google Scholar 

  • Cardot H, Crambes C, Sarda P (2005) Quantile regression when the covariates are functions. J Nonparametr Stat 17:841–856

    MathSciNet  MATH  Google Scholar 

  • Chen K, Muller HG (2012) Conditional quantile analysis when covariates are functions with application to growth data. J R Stat Soc Ser B 74:67–89

    MathSciNet  MATH  Google Scholar 

  • Crainiceanu CM, Goldsmith J (2010) Bayesian functional data analysis using winbugs. J Stat Softw 32:1–33

    Google Scholar 

  • De la Cruza R (2014) Bayesian analysis for nonlinear mixed-effects models under heavy-tailed distributions. Pharm Stat 13:81–93

    Google Scholar 

  • Di CZ, Crainiceanu CM, Caffo BS, Punjabi NM (2009) Multilevel functional principal component analysis. Ann Appl Stat 3(1):458–488

    MathSciNet  MATH  Google Scholar 

  • Fernádez C, Steel M (2000) Bayesian regression analysis with scale mixtures of normals. Econom Theory 16:80–101

    MathSciNet  MATH  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, Berlin

    MATH  Google Scholar 

  • Ferraty F, Rabhi A, Vieu P (2005) Conditional quantiles for dependent functional data with application to the climatic el niño phenomenon. Sankhyā 67:378–398

    MathSciNet  MATH  Google Scholar 

  • Garay AW, Lachos VH, Bolfarine H, Cabral CR (2017) Linear censored regression models with scale mixtures of normal distributions. Stat Papers 58:247–278

    MathSciNet  MATH  Google Scholar 

  • Gervini D (2009) Detecting and handling outlying trajectories in irregularly sampled functional datasets. Ann Appl Stat 3:1758–1775

    MathSciNet  MATH  Google Scholar 

  • Goldsmith J, Bobb J, Crainiceanu CM, Caffo B, Reich D (2011a) Penalized functional regression. J Comput Graph Stat 20:830–851

    MathSciNet  Google Scholar 

  • Goldsmith J, Wand MP, Crainiceanu C (2011b) Functional regression via variational Bayes. Electron J Stat 5:571–602

    MATH  Google Scholar 

  • Goldsmith J, Crainiceanu CM, Caffo B, Reich D (2012) Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements. J R Stat Soc Ser C 61:453–469

    MathSciNet  Google Scholar 

  • Hall P, Horowitz JL (2007) Methodology and convergence rates for functional linear regression. Ann Stat 35:70–91

    MathSciNet  MATH  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

  • Hsing T, Eubank R (2015) Theoretical foundations of functional data analysis, with an introduction to linear operators. John Wiley & Sons, West Sussex

    MATH  Google Scholar 

  • Kato K (2012) Estimation in functional linear quantile regression. Ann Stat 40:3108–3136

    MathSciNet  MATH  Google Scholar 

  • Kokoszka P, Reimherr M (2017) Introduction to functional data analysis. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  • Kong D, Xue K, Yao F, Zhang HH (2016) Partially functional linear regression in high dimensions. Biometrika 103:1–13

    MathSciNet  MATH  Google Scholar 

  • Liu C (1996) Bayesian robust multivariate linear regression with incomplete data. J Am Stat Assoc 91:1219–1227

    MathSciNet  MATH  Google Scholar 

  • Lu Y, Du J, Sun Z (2014) Functional partially linear quantile regression model. Metrika 77:317–332

    MathSciNet  MATH  Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) Winbugs-a bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Google Scholar 

  • Malloy EJ, Morris JS, Adar SD, Suh HH, Gold DR, Coull BA (2010) Wavelet-based functional linear mixed models: an application to measurment error corrected distributed lag models. Biostatistics 11:432–452

    MATH  Google Scholar 

  • Maronna RA, Yohai VJ (2013) Robust functional linear regression based on splines. Comput Stat Data Anal 65:46–55

    MathSciNet  MATH  Google Scholar 

  • Meza C, Osorio F, De la Cruz R (2012) Estimation in nonlinear mixed-effects models using heavy-tailed distributions. Stat Comput 22:121–139

    MathSciNet  MATH  Google Scholar 

  • Morris JS (2015) Functional regression. Ann Rev Stat Appl 2:321–359

    Google Scholar 

  • Peng RD, Welty LJ (2004) The nmmapsdata package. R news 4(2):10–14

    Google Scholar 

  • Pinheiro JC, Liu CH, Wu YN (2001) Efficient algorithms for robust estimation in linear mixed-effects models using a multivariate \(t\)-distribution. J Comput Graph Stat 10:249–276

    MathSciNet  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Reiss PT, Goldsmith J, Shang HL, Ogden RT (2017) Methods for scalar-on-function regression. Int Stat Rev 85(2):228–249

    MathSciNet  Google Scholar 

  • Rosa GJM, Gianola D, Padovani CR (2004) Bayesian longitudinal data analysis with mixed models and thick-tailed distributions using mcmc. J Appl Stat 31:855–873

    MathSciNet  MATH  Google Scholar 

  • Shin H (2009) Partial functional linear regression. J Stat Plan Inference 139:3405–3418

    MathSciNet  MATH  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B 64:583–639

    MathSciNet  MATH  Google Scholar 

  • West M (1984) Outlier models and prior distributions in bayesian linear regression. J R Stat Soc Ser B 46:431–439

    MathSciNet  MATH  Google Scholar 

  • Yu P, Zhang Z, Du J (2016) A test of linearity in partial functional linear regression. Metrika 79:953–969

    MathSciNet  MATH  Google Scholar 

  • Yuan M, Cai T (2010) A reproducing Kernel Hilbert space approach to functional linear regression. Ann Stat 38:3412–3444

    MathSciNet  MATH  Google Scholar 

  • Zhou J, Du J, Sun Z (2016) M-estimation for partially functional linear regression model based on splines. Commun Stat Theory Methods 45(21):6436–6446

    MathSciNet  MATH  Google Scholar 

  • Zhu H, Brown PJ, Morris JS (2011) Robust, adaptive functional regression in functional mixed model framework. J Am Stat Assoc 106(495):1167–1179

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Education of Liaoning Province (Grant Numbers LN2017ZD001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baisen Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 6 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, G., Hou, Y. & Liu, B. Bayesian robust estimation of partially functional linear regression models using heavy-tailed distributions. Comput Stat 35, 2077–2092 (2020). https://doi.org/10.1007/s00180-020-00975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-020-00975-3

Keywords

Navigation