Skip to main content
Log in

Unified strength model based on the Hoek-Brown failure criterion for fibre-reinforced polymer-confined pre-damaged concrete columns with circular and square cross sections

基于 Hoek-Brown 破坏准则的 FRP 约束损伤混凝土圆柱与方柱统一强度模型

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Fibre-reinforced polymer (FRP) has the advantages of high strength, light weight, corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns. Most of the existing strength models were built by regression analysis of experimental data; however, in this article, a new unified strength model is proposed using the Hoek-Brown failure criterion. To study the strength of FRP-confined damaged and undamaged concrete columns, 900 test data were collected from the published literature and a large database that contains the cross-sectional shape of each specimen, the damage type, the damage level and the FRP-confined stiffness was established. A new strength model using the Hoek-Brown failure criterion was established and is suitable for both circular and square columns that are undamaged, load-damaged and fire-damaged. Based on the database, most of the existing strength models from the published literature and the model proposed in this paper were evaluated. The evaluation shows that the proposed model can predict the compressive strength for FRP-confined pre-damaged and undamaged concrete columns with good accuracy.

摘要

纤维增强聚合物(FRP)具有强度高、 重量轻、 耐腐蚀、 施工方便等优点, 广泛应用于受损混凝土柱的修复和加固. 现有的强度模型大多是通过实验数据的回归分析建立的. 本文利用 Hoek-Brown 破坏准则, 提出了一种新的强度统一模型. 为了研究 FRP 约束混凝土损伤和未损伤柱的强度, 作者从已发表的文献中收集了 900 个试验数据, 建立了包含各试件截面形状、 损伤类型、 损伤程度和 FRP 约束刚度的大型数据库. 利用 Hoek-Brown 破坏准则建立了一种新的强度模型, 该模型适用于未损伤、 荷载损伤和火灾损伤的圆柱和方柱. 在数据库的基础上, 对发表文献中已有的强度模型和本文提出的强度模型进行了评估. 评估结果表明, 该模型能较好地预测 FRP 约束损伤和未损伤混凝土柱的抗压强度.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CAO Yu-gui, JIANG Cheng, WU Yu-fei. Cross-sectional unification on the stress-strain model of concrete subjected to high passive confinement by fiber-reinforced polymer [J]. Polymers, 2016, 8(5):186. DOI: https://doi.org/10.3390/polym8050186.

    Google Scholar 

  2. CAO Yu-gui, WU Yu-fei, LI Xiao-qing. Unified model for evaluating ultimate strain of FRP confined concrete based on energy method [J]. Construction and Building Materials, 2016, 103: 23–35. DOI: https://doi.org/10.1016/j.conbuildmat.2015.11.042.

    Google Scholar 

  3. LI Peng-da, SUI Li-li, XING Feng, LI Ma-li, ZHOU Ying-wu, WU Yu-fei. Stress-strain relation of FRP-confined predamaged concrete prisms with square sections of different corner radii subjected to monotonic axial compression [J]. Journal of Composites for Construction, 2019, 23(2): 04019001. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000921.

    Google Scholar 

  4. PAN Yi, GUO Rui, LI Hong-yi, TANG Hong-yuan, HUANG Jing-xiang. Analysis-oriented stress–strain model for FRP-confined concrete with preload [J]. Composite Structures, 2017, 166: 57–67. DOI: https://doi.org/10.1016/j.compstruct.2017.01.007.

    Google Scholar 

  5. WEI You-yi, WU Yu-fei. Unified stress–strain model of concrete for FRP-confined columns [J]. Construction and Building Materials, 2012, 26(1): 381–392. DOI: https://doi.org/10.1016/j.conbuildmat.2011.06.037.

    Google Scholar 

  6. WU Yu-fei, YUN Yan-chun, WEI You-yi, ZHOU Ying-wu. Effect of predamage on the stress-strain relationship of confined concrete under monotonic loading [J]. Journal of Structural Engineering, 2014, 140(12): 04014093. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001015.

    Google Scholar 

  7. ZHANG Yi-rui, WEI Yang, BAI Jia-wen, WU Gang, DONG Zhi-qiang. A novel seawater and sea sand concrete filled FRP-carbon steel composite tube column: Concept and behavior [J]. Composite Structures, 2020, 246: 112421. DOI: https://doi.org/10.1016/j.compstruct.2020.112421.

    Google Scholar 

  8. WEI Yang, ZHANG Yi-rui, CHAI Ji-le, WU Gang, DONG Zhi-qiang. Experimental investigation of rectangular concrete-filled fiber reinforced polymer (FRP)-steel composite tube columns for various corner radii [J]. Composite Structures, 2020, 244: 112311. DOI: https://doi.org/10.1016/j.compstruct.2020.112311.

    Google Scholar 

  9. ZHANG Yi-rui, WEI Yang, BAI Jia-wen, ZHANG Yong-xing. Stress-strain model of an FRP-confined concrete filled steel tube under axial compression [J]. Thin-Walled Structures, 2019, 142: 149–159. DOI: https://doi.org/10.1016/j.tws.2019.05.009.

    Google Scholar 

  10. ZHANG Yi-rui, WEI Yang, ZHAO Kang, DING Ming-min, WANG Li-bin. Analytical model of concrete-filled FRP-steel composite tube columns under cyclic axial compression [J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106414. DOI: https://doi.org/10.1016/j.soildyn.2020.106414.

    Google Scholar 

  11. GUO Yong-chang, XIE Jian-he, XIE Zhi-hong, ZHONG Jian. Experimental study on compressive behavior of damaged normal- and high-strength concrete confined with CFRP laminates [J]. Construction and Building Materials, 2016, 107: 411–425. DOI: https://doi.org/10.1016/j.conbuildmat.2016.01.010.

    Google Scholar 

  12. BISBY L A, CHEN J F, LI S Q, STRATFORD T J, CUEVA N, CROSSLING K. Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wraps [J]. Engineering Structures, 2011, 33(12): 3381–3391. DOI: https://doi.org/10.1016/j.engstruct.2011.07.002.

    Google Scholar 

  13. GUO Yong-chang, ZHONG Jian, XIE Jian-he, CEN Yu-qiao, DU Zheng-peng. Experimental study of axial compressive behavior of CFRP-confined high-strength concrete damaged by high temperature [J]. Industrial Construction, 2014, 44(10): 1–5. DOI: https://doi.org/10.1007/BF00567459. (in Chinese)

    Google Scholar 

  14. LENWARI A, RUNGAMORNRAT J, WOONPRASERT S. Axial compression behavior of fire-damaged concrete cylinders confined with CFRP sheets [J]. Journal of Composites for Construction, 2016, 20(5): 04016027. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000683.

    Google Scholar 

  15. LIU Jing-ya, HUO Jing-si, LIU Yan-zhi. Experimental study on the mechanical performance of post-fire concrete confined by CFRP sheets [J]. Engineering Mechanics, 2017, 34(9): 158–166. (in Chinese)

    Google Scholar 

  16. OUYANG Li-jun, XU Feng, LU Zhou-dao. Axial compressive behavior of basalt fiber reinforced polymerconfined damaged concrete after exposed to elevated temperatures [J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2002–2013. DOI: https://doi.org/10.13801/j.cnki.fhclxb.20170926.002. (in Chinese)

    Google Scholar 

  17. OUYANG Li-jun, XU Feng, GAO Wan-yang, YANG Wei-tao, ZHEN Bin. Axial compressive behavior of post-heated square concrete columns wrapped by BFRP sheets: An experimental investigation [J]. Acta Materiae Compositae Sinica, 2019, 36(2): 469–481. DOI: https://doi.org/10.13801/j.cnki.fhclxb.20180611.001. (in Chinese)

    Google Scholar 

  18. MA Gao, LI Hui, YAN Li-bo, HUANG Liang. Testing and analysis of basalt FRP-confined damaged concrete cylinders under axial compression loading [J]. Construction and Building Materials, 2018, 169: 762–774. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.172.

    Google Scholar 

  19. LAM L, TENG Jin-guang. Ultimate condition of fiber reinforced polymer-confined concrete [J]. Journal of Composites for Construction, 2004, 8(6): 539–548. DOI: https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539).

    Google Scholar 

  20. LIU Hsien-kuang, LIAO Wei-chong, TSENG Liang, LEE Wen-hung, SAWADA Y. Compression strength of pre-damaged concrete cylinders reinforced by non-adhesive filament wound composites [J]. Composites Part A, 2004, 35(2): 281–292. DOI: https://doi.org/10.1016/S1359-835X(03)00250-1.

    Google Scholar 

  21. HOEK E, BROWN E T. Empirical strength criterion for rock masses [J]. Journal of the Geotechnical Engineering Division, 1980, 106(15715): 1013–1035. DOI: https://doi.org/10.1016/0022-1694(80)90029-3.

    Google Scholar 

  22. YE Jian-shu. Principle of structural design [M]. 3rd ed. Beijing: China Communications Press Co., Ltd, 2014: 9–13. (in Chinese)

    Google Scholar 

  23. ZHANG Yang, CAO Yu-gui, HU Zhi-li. Unified strength model based on Griffith failure criterion for FRP-confined undamaged and damaged concrete [J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2358–2366. DOI: https://doi.org/10.13801/j.cnki.fhclxb.20191223.002. (in Chinese)

    Google Scholar 

  24. WU Yu-fei, ZHOU Ying-wu. Unified strength model based on Hoek-Brown failure criterion for circular and square concrete columns confined by FRP [J]. Journal of Composites for Construction, 2010, 14(2): 175–184. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000062.

    Google Scholar 

  25. WU Yu-fei, LIU Tao, OEHLERS D J. Fundamental principles that govern retrofitting of reinforced concrete columns by steel and FRP jacketing [J]. Advances in Structural Engineering, 2006, 9(4): 507–533. DOI: https://doi.org/10.1260/136943306778812769.

    Google Scholar 

  26. WU Yu-fei, WANG Lei-ming. Unified strength model for square and circular concrete columns confined by external jacket [J]. Journal of Structural Engineering, 2009, 135(3): 253–261. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(253).

    Google Scholar 

  27. ABBASNIA R, ZIAADINY H. Experimental investigation and strength modeling of CFRP-confined concrete rectangular prisms under axial monotonic compression [J]. Materials and Structures, 2015, 48(1, 2): 485–500. DOI: https://doi.org/10.1617/s11527-013-0198-y.

    Google Scholar 

  28. AKOGBE R K, LIANG Meng, WU Zhi-min. Size effect of axial compressive strength of CFRP confined concrete cylinders [J]. International Journal of Concrete Structures & Materials, 2011, 5(1): 49–55. DOI: https://doi.org/10.4334/IJCSM.2011.5.1.049.

    Google Scholar 

  29. ALMUSALLAM T H. Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates [J]. Composites Part B, 2007, 38(5, 6): 629–639. DOI: https://doi.org/10.1016/j.compositesb.2006.06.021.

    Google Scholar 

  30. CUI C. Behaviour of normal and high strength concrete confined with fibre reinforced polymers (FRP) [D]. Toronto: University of Toronto, 2009: 75–104. DOI

    Google Scholar 

  31. DALGIC K D, ISPIR M, BINBIR E, ILKI A. Effects of pre-damage on axial behavior of CFRP Jacketed non-circular members[C]// Proceedings of Conference on Civil Engineering Infrastructure based on Polymer Composites. Krakow, CECOM, 2012.

    Google Scholar 

  32. DALGIC K D, ISPIR M, ILKI A. Cyclic and monotonic compression behavior of CFRP-jacketed damaged noncircular concrete prisms [J]. Journal of Composites for Construction, 2016, 20(1): 04015040. DOI:https://doi.org/10.1061/(ASCE)CC.1943-5614.0000603.

    Google Scholar 

  33. KARABINIS A I, ROUSAKIS T C. Concrete confined by FRP material: A plasticity approach [J]. Engineering Structures, 2002, 24(7): 923–932. DOI: https://doi.org/10.1016/S0141-0296(02)00011-1.

    Google Scholar 

  34. MA Gao, LI Hui, DUAN Zhong-dong. Repair effects and acoustic emission technique-based fracture evaluation for predamaged concrete columns confined with fiber-reinforced polymers [J]. Journal of Composites for Construction, 2012, 16(6): 626–639. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000309.

    Google Scholar 

  35. MASIA M J, GALE T N, SHRIVE N G. Size effects in axially loaded square-section concrete prisms strength [J]. Canadian Journal of Civil Engineering, 2004, 31(1): 1–13. DOI: https://doi.org/10.1139/l03-064.

    Google Scholar 

  36. ROCHETTE P, LABOSSIÈRE P. Axial testing of rectangular column models confined with composites [J]. Journal of Composites for Construction, 2000, 4(3): 129–136. DOI: https://doi.org/10.1061/(ASCE)1090-0268(2000)4:3(129).

    Google Scholar 

  37. WANG D Y, WANG Z Y, SMITH S T, YU T. Size effect on axial stress–strain behavior of CFRP-confined square concrete columns [J]. Construction and Building Materials, 2016, 118: 116–126. DOI: https://doi.org/10.1016/j.conbuildmat.2016.04.158.

    Google Scholar 

  38. WANG Lei-ming, WU Yu-fei. Effect of corner radius on the performance of CFRP-confined square concrete columns: Test [J]. Engineering Structures, 2008, 30(2): 493–505. DOI: https://doi.org/10.1016/j.engstruct.2007.04.016.

    MathSciNet  Google Scholar 

  39. WU Yu-fei, JIANG Jia-fei. Effective strain of FRP for confined circular concrete columns [J]. Composite Structures, 2013, 95(1): 479–491. DOI: https://doi.org/10.1016/j.compstruct.2012.08.021.

    Google Scholar 

  40. RICHART F E, BRANDZAEG A, BROWN R L. A study of the failure of concrete under combined compressive stresses [R]. Urbana (USA): Engineering Experiment Station, University of Illinois, 1928.

    Google Scholar 

  41. MATTHYS S, TOUTANJI H, AUDENAERT K, TAERWE L. Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites [J]. ACI Structural Journal, 2005, 102(2): 258–267. DOI: https://doi.org/10.1002/nme.1234.

    Google Scholar 

  42. MIRMIRAN A, SHAHAWY M. Behavior of concrete columns confined by fiber composites [J]. Journal of Structural Engineering, 1997, 123(5): 583–590. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(583).

    Google Scholar 

  43. KUMUTHA R, VAIDYANATHAN R, PALANICHAMY M S. Behaviour of reinforced concrete rectangular columns strengthened using GFRP [J]. Cement & Concrete Composites, 2007, 29(8): 609–615. DOI

    Google Scholar 

  44. KARABINIS A I, ROUSAKIS T C. Carbon FRP confined concrete elements under axial load [C]// FRP Composites in Civil Engineering Conference. Hong Kong, China, 2001: 309–316.

  45. LAM L, TENG Jin-guang. Design-oriented stress-strain model for FRP-confined concrete in rectangular columns [J]. Journal of Reinforced Plastics and Composites, 2003, 22(13): 1149–1186. DOI: https://doi.org/10.1177/0731684403035429.

    Google Scholar 

  46. SPOELSTRA M R, MONTI G. FRP-confined concrete model [J]. Journal of Composites for Construction, 1999, 3(3): 143–150. DOI: https://doi.org/10.1061/(ASCE)1090-0268(2001)5:1(62).

    Google Scholar 

  47. FARDIS M N, KHALILI H H. FRP-encased concrete as a structural material [J]. Magazine of Concrete Research, 2015, 34(121): 191–202. DOI: https://doi.org/10.1680/macr.1982.34.121.191.

    Google Scholar 

  48. SAMAAN M, MIRMIRAN A, SHAHAWY M. Model of concrete confined by fiber composites [J]. Journal of Structural Engineering, 1998, 124(9): 1025–1031. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025).

    Google Scholar 

  49. CAMPIONE G, MIRAGLIA N. Strength and strain capacities of concrete compression members reinforced with FRP [J]. Cement & Concrete Composites, 2003, 25(1): 31–41. DOI: https://doi.org/10.1016/S0958-9465(01)00048-8.

    Google Scholar 

  50. SHEHATA I A E M, CARNEIRO L A V, SHEHATA L C D. Strength of short concrete columns confined with CFRP sheets [J]. Materials & Structures, 2002, 35(1): 50–58. DOI: https://doi.org/10.1007/BF02482090.

    Google Scholar 

  51. YOUSSEF M N, FENG M Q, MOSALLAM A S. Stress–strain model for concrete confined by FRP composites [J]. Composites Part B, 2005, 38(5): 614–628. DOI: https://doi.org/10.1016/j.compositesb.2006.07.020.

    Google Scholar 

  52. MIRMIRAN A, SHAHAWY M, SAMAAN M, ECHARY H E, MASTRAPA J C, PICO O. Effect of column parameters on FRP-confined concrete [J]. Journal of Composites for Construction, 1998, 2(4): 175–185. DOI: https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175).

    Google Scholar 

  53. ALSALLOUM Y A. Influence of edge sharpness on the strength of square concrete columns confined with FRP composite laminates [J]. Composites Part B, 2007, 38(5): 640–650. DOI: https://doi.org/10.1016/j.compositesb.2006.06.019.

    Google Scholar 

  54. ILKI A, KUMBASAR N, KOC V. Low strength concrete members externally confined with FRP sheets [J]. Structural Engineering & Mechanics, 2004, 18(18): 167–194. DOI: https://doi.org/10.12989/sem.2004.18.2.167.

    Google Scholar 

  55. CAO Yu-gui, LIU Mu-yu, ZHANG Yang, HU Jun, YANG Sheng-chun. Effect of strain rates on the stress-strain behavior of FRP-confined pre-damaged concrete [J]. Materials, 2020, 13(5): 1078. DOI: https://doi.org/10.3390/ma13051078.

    Google Scholar 

  56. CAO Yu-gui, LIU Mu-yu, WU Yu-fei. Effect of low strain rate on the axial behavior of concrete in CFRP-confined circular cylinders [J]. Construction and Building Materials, 2020, 255: 119351. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119351.

    Google Scholar 

  57. LIM J C, OZBAKKALOGLU T. Lateral strain-to-axial strain relationship of confined concrete [J]. Journal of Structural Engineering, 2015, 141(5): 04014141. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001094.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CAO Yu-gui provided the concept and edited the draft of manuscript. ZHANG Yang conducted the literature review and wrote the first draft of the manuscript. LU Zhi-fang edited the draft of manuscript.

Corresponding author

Correspondence to Yu-gui Cao  (曹玉贵).

Ethics declarations

ZHANG Yang, LU Zhi-fang, and CAO Yu-gui declare that they have no conflict of interest.

Additional information

Foundation item: Project(2017M622540) supported by the China Postdoctoral Science Foundation, China; Project(51808419) supported by the National Natural Science Foundation of China; Project(2019CFB217) supported by the National Natural Science Foundation of Hubei Province, China; Project(201623) supported by the Science and Technology Project of Wuhan Urban and Rural Construction Committee, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lu, Zf. & Cao, Yg. Unified strength model based on the Hoek-Brown failure criterion for fibre-reinforced polymer-confined pre-damaged concrete columns with circular and square cross sections. J. Cent. South Univ. 27, 3807–3820 (2020). https://doi.org/10.1007/s11771-020-4563-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4563-z

Key words

关键词

Navigation