Skip to main content
Log in

Triangular Quantum-Dot Cellular Automata Wire for Standard Ternary Logic

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) is a computational paradigm that is based on encoding information in terms of the configuration of charge among quantum dots without requiring current switches. Mostly, QCA cells have been realized by employing the electron switching in square quantum-dot cells. In this paper, a triangular metal-dot cell with a single electron is proposed to represent ternary information. Then, an inverter chain of the proposed triangle cells is suggested through juxtaposing the cells. Additionally, wire crossing and wire fan-out are the two inseparable subjects of QCA wire. A wire-crossing method is presented for the proposed ternary wire. Wire fan-out is also dealt with in this paper by an innovative approach. The correctness of operation of proposed cells and wires are thoroughly verified by applying the physical relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Madan, J., Chaujar, R.: Effect of nanoscale structure on reliability of nano devices and sensors. In: Li, T., Liu, Z. (eds.) Outlook and Challenges of Nano Devices, Sensors, and MEMS, pp. 239–269. Springer, Cham (2017)

    Chapter  Google Scholar 

  2. Bousari, N.B., Anvarifard, M.K., Haji-Nasiri, S.: Improving the electrical characteristics of nanoscale triple-gate junctions FinFET using gate oxide engineering. AEU Int. J. Electron. Commun. 108, 226–234 (2019)

    Article  Google Scholar 

  3. Martel, R., Schmidt, T., Shea, H.R., Hertel, T., Avouris, P.: Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)

    Article  ADS  Google Scholar 

  4. Matsumoto, K., Ishii, M., Segawa, K., Oka, Y., Vartanian, B.J., Harris, J.S.: Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanooxidation process for the TiOx/Ti system. Appl. Phys. Lett. 68, 34–36 (1996)

    Article  ADS  Google Scholar 

  5. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology. 4, 49–57 (1993)

    Article  ADS  Google Scholar 

  6. Blair, E.P., Yost, E., Lent, C.S.: Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata. J. Comput. Electron. 9, 49–55 (2010)

    Article  Google Scholar 

  7. Dysart, T.J.: Modeling of electrostatic QCA wires. IEEE Trans. Nanotechnol. 12, 553–560 (2013)

    Article  ADS  Google Scholar 

  8. Angizi, S., Samadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46, 43–51 (2015)

    Article  Google Scholar 

  9. Tahmasebi, M., Mirzaee, R.F., Komleh, S.H.P.: On the design methodology of Boolean functions with quantum-dot cellular automata for reducing delay and number of wire crossings. J. Comput. Electron. 17, 1756–1770 (2018)

    Article  Google Scholar 

  10. Kandasamy, N., Ahmad, F., Telagam, N.: Shannon logic based novel QCA full adder design with energy dissipation analysis. Int. J. Theor. Phys. 57, 3702–3715 (2018)

    Article  Google Scholar 

  11. Bhat, S.M., Ahmed, S.: Design of ultra-efficient reversible gate based on 1-bit full adder in QCA with power dissipation analysis. Int. J. Theor. Phys. 58, 4042–4063 (2019)

    Article  Google Scholar 

  12. Baldwin, A.T., Will, J.D., Tougaw, D.: Using the full quantum basis set to simulate quantum-dot cellular automata devices. J. Comput. Electron. 18, 982–987 (2019)

    Article  Google Scholar 

  13. Dubrova, E.: Multiple-valued logic in VLSI: challenges and opportunities. In Proc. NORCHIP, Oslo, Norway, 99, 340–350 (1999)

  14. Anil, D.G., Bai, Y., Choi, Y.: Performance evaluation of ternary computation in SRAM design using graphene nanoribbon field effect transistors. IEEE 8th Annual Computing and Communication Workshop and Conf., Las Vegas, USA. 382–388 (2018)

  15. Bajec, I.L., Zimic, N., Mraz, M.: The ternary quantum-dot cell and ternary logic. Nanotechnology. 17, 1826–1829 (2006)

    Article  Google Scholar 

  16. Bajec, I.L., Zimic, N., Mraz, M.: Towards the bottom-up concept: extended quantum-dot cellular automata. Microelectron. Eng. 83, 1937–1942 (2006)

    Google Scholar 

  17. Tehrani, M.A., Navi, K.: A novel quantum dot cellular automata for implementation of multi-valued logic. Nano Today Conf., Singapore, Singapore. 1–8 (2009)

  18. Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron. Devices. 50, 1890–1896 (2003)

    Article  ADS  Google Scholar 

  19. Leon, A.: Propagation of a binary signal along a chain of triangular graphane nanoclusters. Nanosci. Nanotechnol. Lett. 6, 555–560 (2014)

    Article  ADS  Google Scholar 

  20. Pulimeno, A., Graziano, M., Wang, R., Piccinini, G.: Fault tolerance analysis of a bis-ferrocene QCA wire. Workshop on Design and Test Methodologies for Emerging Technologies, Avignon, France. 1–2 (2013)

  21. Von Neumann, J., Burks, A.W.: Theory of self-reproducing automata. IEEE Trans. Neural Netw. 5, 3–14 (1966)

    Google Scholar 

  22. Campos, C.A.T., Marciano, A.L., Neto, O.P.V., Torres, F.S.: USE: a universal, scalable, and efficient clocking scheme for QCA. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 35, 513–517 (2016)

    Article  Google Scholar 

  23. Amlani, I., Orlov, A.O., Snider, G.L., Lent, C.S.: Demonstration of a six-dot quantum cellular automata system. Appl. Phys. Lett. 72, 2179–2181 (1998)

    Article  ADS  Google Scholar 

  24. Liu, M., Lent, C.S.: High-speed metallic quantum-dot cellular automata. 3rd IEEE Conf. Nanotechnology, San Francisco, USA. 2, 465–468 (2003)

  25. Kim, K., Wu, K., Karri, R.: Towards designing robust QCA architectures in the presence of sneak noise paths. In Proc. Design, Automation and Test in Europe, Munich, Germany. 1214–1219 (2015)

  26. Schulhof, G., Walus, K., Jullien, G.A.: Simulation of random cell displacements in QCA. ACM J. Emerg. Technol. Comput. Syst. 2, 1–14 (2007)

    Google Scholar 

  27. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3, 26–31 (2004)

    Article  ADS  Google Scholar 

  28. QCADesigner, The University of British Columbia, available at: https://waluslab.ece.ubc.ca/qcadesigner. Accessed 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Faghih Mirzaee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronaghi, N., Faghih Mirzaee, R. & Sayedsalehi, S. Triangular Quantum-Dot Cellular Automata Wire for Standard Ternary Logic. Int J Theor Phys 59, 3821–3839 (2020). https://doi.org/10.1007/s10773-020-04634-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04634-7

Keywords

Navigation