Skip to main content

Advertisement

Log in

Entropy optimization analysis on nonlinear thermal radiative electromagnetic Darcy–Forchheimer flow of SWCNT/MWCNT nanomaterials

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are inevitable due to its tremendously high thermal and electrical conductivities, strength, stiffness, and toughness characteristics. The utilization of both porous media and nanofluids with CNTs as nanoparticles can augment the thermal efficiency of typical physical systems significantly. In view of such advantages, the present study is intended to convey the influence of entropy minimization and nonlinear thermal radiation on the electromagnetic flow of nanofluids with single wall carbon nanotubes (SWCNTs) and multiwall carbon nanotubes (MWCNTs) nanoparticles suspensions past the surface of thin needle. In addition, the famous Darcy Forchheimer flow and Cattaneo-Christov heat flux models are implemented. The required numerical solution is devised pragmatically via bvp4c in MATLAB for the system of highly nonlinear ordinary differential equations. It is found that the porous matrix and local Forchheimer parameter are detrimental to the regular flow of nanofluids. Thermal fields magnify in respect of hiked porosity and temperature ratio parameters and diminish due to rise in electric and thermal relaxation parameters. Entropy minimization due to porous irreversibility is prominent for MWCNTs than SWCNTs. Bejan number upsurges due to rise in volume fraction and porosity parameter for both SWCNT-water and MWCNT-water nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

\((u,v)\) :

Velocity components in the axial and radial directions \(\left( {{\text{m}}\,{\text{s}}^{ - 1} } \right)\)

\(\rho_{nf}\) :

Effective density of the nf \(\left( {{\text{kg}}\,{\text{m}}^{ - 3} } \right)\)

hc:

Heat capacitance

nf:

Nanofluid

bf:

Base fluid

tc:

Thermal conductivity

HT:

Heat transfer

HTR:

Heat transfer rate

CNT:

Carbon nanotube

DFF:

Darcy–Forchheimer flow

CCHF:

Cattaneo–Christov Heat Flux

NLTR:

Nonlinear thermal radiation

CCDDT:

Cattaneo–Christov double diffusion theory

MBL:

Momentum boundary layer

TBL:

Thermal boundary layer

\(\left( {\rho C_{p} } \right)_{nf}\) :

hc of the nf \(\left( {{\text{J}}\,{\text{kg}}^{2} \,{\text{m}}^{3} {\text{K}}^{ - 1} } \right)\)

\(\left( {\rho C_{p} } \right)_{f}\) :

hc of bf \(\left( {{\text{J}}\,{\text{kg}}^{2} \,{\text{m}}^{3} {\text{K}}^{ - 1} } \right)\)

\(\left( {\rho C_{p} } \right)_{{{\text{CNT}}}}\) :

hc of carbon nanotubes \(\left( {{\text{J}}\,{\text{kg}}^{2} \,{\text{m}}^{3} {\text{K}}^{ - 1} } \right)\)

\(\rho_{{{\text{CNT}}}}\) :

Density of carbon nanotubes \(\left( {{\text{kg}}\,{\text{m}}^{ - 3} } \right)\)

\(\rho_{f}\) :

Density of bf \(\left( {{\text{kg}}\,{\text{m}}^{ - 3} } \right)\)

\(\mu_{nf}\) :

Effective dynamic viscosity of the nf \(\left( {{\text{kg}}\,{\text{m}}^{ - 1} {\text{s}}^{ - 1} } \right)\)

\(\mu_{f}\) :

Effective dynamic viscosity of bf \(\left( {{\text{kg}}\,{\text{m}}^{ - 1} {\text{s}}^{ - 1} } \right)\)

\(\beta_{nf}\) :

Thermal expansion of nf \(\left( {{\text{K}}^{ - 1} } \right)\)

\(\beta_{f}\) :

Thermal expansion of bf \(\left( {{\text{K}}^{ - 1} } \right)\)

\(\beta_{{{\text{CNT}}}}\) :

Thermal expansion of carbon nanotubes \(\left( {{\text{K}}^{ - 1} } \right)\)

\(k_{nf}\) :

tc of nf \(\left( {{\text{W}}\,\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1} } \right)\)

\(k_{f}\) :

tc of bf \(\left( {{\text{W}}\,\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1} } \right)\)

\(k_{{{\text{CNT}}}}\) :

tc of carbon nanotubes \(\left( {{\text{W}}\,\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1} } \right)\)

\( \upsilon _{{nf}} \) :

Kinematic viscosity of nf \(\left( {{\text{m}}^{2} {\text{s}}^{ - 1} } \right)\)

\(\sigma_{nf}\) :

Electrical conductivity of nf

\(E_{0}\) :

Uniform strength of electric field

\(B_{0}\) :

Uniform strength of magnetic field

\(\sigma^{*}\) :

Stefan–Boltzmann constant

\(k^{*}\) :

Mean absorption coefficient

\(K\) :

Porous medium permeability

\(\phi\) :

Solid volume fraction

\(T\) :

Fluid temperature in the boundary layer (K)

\(T_{w}\) :

Temperature on the surface of thin needle (K)

\(T_{\infty }\) :

Ambient fluid temperature (K)

\(\alpha_{f}\) :

Thermal diffusivity of the bf \(\left( {{\text{m}}^{2} {\text{s}}^{ - 1} } \right)\)

\(\alpha_{f}\) :

Thermal diffusivity of the bf \(\left( {{\text{m}}^{2} {\text{s}}^{ - 1} } \right)\)

\(F\left( { = \frac{{c_{b} }}{{\sqrt {K^{*} } }}} \right)\) :

Inertia coefficient in the porous medium

\(c_{b}\) :

Drag coefficient

\(F_{r} = \frac{{xc_{b} }}{{\sqrt {K^{*} } }}\) :

Local inertia coefficient

\(\Gamma\) :

Relaxation time for heat flux

\(Gr = \frac{{g\beta T_{\infty } \left( {\theta_{r} - 1} \right)x^{3} }}{{\upsilon_{f}^{2} }}\) :

Thermal Grassof number

\({\text{Re}} = \frac{Ux}{{\upsilon_{f} }}\) :

Reynolds number

\(M = \frac{{\sigma_{f} B_{0}^{2} x}}{{\rho_{f} U}}\) :

Hartmann number

\(\beta = \frac{{\upsilon_{f} x}}{{K^{*} U}}\) :

Porosity parameter

\(Pr = \frac{{\upsilon_{f} }}{{\alpha_{f} }}\) :

Prandtl number

\(Nr = \,\frac{{k^{*} k_{f} }}{{4\sigma^{*} T_{\infty } }}\) :

Radiation parameter

\(E_{c} = \frac{{U^{2} }}{{T_{\infty } \left( {\theta_{r} - 1} \right)\left( {c_{p} } \right)_{f} }}\) :

Eckert number

\(\Omega = \frac{U\Gamma }{x}\) :

Thermal relaxation parameter

\(\lambda = \frac{{U_{w} }}{U}\) :

Velocity ratio parameter

\(Br = \Pr \cdot Ec = \frac{{\mu_{f} U^{2} }}{{k_{f} T_{\infty } \left( {\theta_{r} - 1} \right)}}\) :

Brinkman number

\(\theta_{r} = \frac{{T_{w} }}{{T_{\infty } }}\) :

Temperature ratio parameter

\(S^{\prime\prime\prime}_{0} = \frac{{4k_{f} \left( {T_{w} - T_{\infty } } \right)^{2} }}{{T_{\infty }^{2} x^{2} }}\) :

Nondimensional characteristic EG rate

References

  • Bejan A (1977) The concept of irreversibility in heat exchanger design: counter flow heat exchangers for Gas-to-Gas Applications. Trans ASME 99:374–380

    Article  CAS  Google Scholar 

  • Berrehal H, Mabood F (2020) Entropy optimized radiating water/FCNTs nanofluid boundary layer flow with convective condition. Eur Phys J Plus 135:535

    Article  CAS  Google Scholar 

  • Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publ Fed 231:99–106

    CAS  Google Scholar 

  • Dogonchi AS, Nayak MK, Karimi N, Chamkha Ali J, Ganji DD (2020) Numerical simulation of hydrothermal features of Cu–H2O nanofluid natural convection within a porous annulus considering diverse configurations of heater. J Therm Anal Cal 141:2109–2125

    Article  CAS  Google Scholar 

  • Eid MR, Mabood F (2020) Entropy analysis of a hydromagnetic micropolar dusty carbon NTs-kerosene nanofluid with heat generation: Darcy-Forchheimer scheme. J Therm Anal Cal. https://doi.org/10.1007/s10973-020-09928-w

    Article  Google Scholar 

  • Ghadikolaei SS, Hosseinzadeh K, Hatami M, Ganji DD, Armin M (2018) Investigation for squeezing flow of ethylene glycol (C2H6O2) carbon nanotubes (CNTs) in rotating stretching channel with nonlinear thermal radiation. J Mol Liq 263:10–21

    Article  CAS  Google Scholar 

  • Haq RU, Khan ZH, Khan WA (2014) Thermophysical effects of carbon nanotubes on MHD flow over a stretching surface. Phys E 63:215–222

    Article  Google Scholar 

  • Hayat T, Ijaz KM, Khan TA, Khan MI, Alsaedi A (2018a) Entropy generation in Darcy-Forchheimer bidirectional flow of water-based carbon nanotubes with convective boundary conditions. J Mol Liq 265:629–638

    Article  CAS  Google Scholar 

  • Hayat T, Khan MI, Khan TA, Ahmad S, Alsaedi A (2018b) Entropy generation in Darcy-Forchheimer bidirectional flow of water-based carbon nanotubes with convective boundary conditions. J Mol Liq 265:629–638

    Article  CAS  Google Scholar 

  • Ibrahim M, Ijaz KM (2019) Mathematical modeling and analysis of SWCNT−water and MWCNT−water flow over a stretchable sheet. Comput Meth Prog Bio. https://doi.org/10.1016/j.cmpb.2019.105222

    Article  Google Scholar 

  • Ijaz KM, Hayat T, Shah F, Ur RM, Haq F (2019) Physical aspects of CNTs and induced magnetic flux in stagnation point flow with quartic chemical reaction. Int J Heat Mass Transf 135:561–568

    Article  Google Scholar 

  • Imtiaz M, Hayat T, Alsaedi A, Ahmad B (2016) Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects. Int J Heat Mass Transf 101:948–957

    Article  CAS  Google Scholar 

  • Ishak A, Nazar R, Pop I (2007) Boundary layer flow over a continuously moving thin needle in a parallel free stream. Chin Phys Lett 24:2895

    Article  CAS  Google Scholar 

  • Mabood F, Ibrahim SK, Khan WA (2019) Effect of melting and heat generation/absorption on Sisko nanofluid over a stretching surface with nonlinear radiation. Phys Scr 94(6):065701

    Article  CAS  Google Scholar 

  • Mabood F, Yusuf AT, Khan WA (2020a) Cu-Al2O3–H2O Hybrid nanofluid flow with melting heat transfer, irreversibility analysis and non-linear thermal radiation. J Ther Anal Cal. https://doi.org/10.1007/s10973-020-09720-w

    Article  Google Scholar 

  • Mabood F, Muhammad T, Nayak MK, Waqas H, Makinde OD (2020b) EMHD flow of non-Newtonian nanofluids over thin needle with Robinson’s condition and Arrhenius pre-exponential factor law. Phys Scr 95:115219

    Article  CAS  Google Scholar 

  • Nayak MK (2016) Chemical reaction effect on MHD viscoelastic fluid over a stretching sheet through porous medium. Meccanica 51:1699–1711

    Article  Google Scholar 

  • Nayak MK, Mehmood R, Makinde OD, Mahian O, Chamkha AJ (2019) Magnetohydrodynamic flow and heat transfer impact on ZnO-SAE50 nanolubricant flow due to an inclined rotating disk. J Central South Univ 26:1146–1160

    Article  CAS  Google Scholar 

  • Nayak MK, Wakif A, Animasaun IL, Saidi Hassani Alaoui M (2020a) Numerical differential quadrature examination of steady mixed convection nanofluid flows over an isothermal thin needle conveying metallic and metallic oxide nanomaterials: a comparative investigation. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-04420-x

    Article  Google Scholar 

  • Nayak MK, Agbaje TM, Mondal S, Sibanda P, Leach PGL (2020b) Thermodynamic effect in Darchy-Forchheimer nanofluid flow of a single-wall carbon nanotube/multi-wall carbon nanotube suspension due to a stretching/shrinking rotating disk: Buongiorno two-phase model. J Eng Math. https://doi.org/10.1007/s10665-019-10031-9

    Article  Google Scholar 

  • Nayak MK, Hakeem AKA, Ganga B, Ijaz KM, Waqas M, Makinde OD (2020c) Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: a combined approach to good absorber of solar energy and intensification of heat transport. Comput Meth Prog Bio 186:105131

    Article  CAS  Google Scholar 

  • Nayak MK, Shaw S, Ijaz KM, Pandey VS, Nazeer M (2020d) Flow and thermal analysis on Darcy-Forchheimer flow of copper-water nanofluid due to a rotating disk: a static and dynamic approach. J Mater Res Technol 9(4):7387–7408

    Article  CAS  Google Scholar 

  • Rasool G, Wakif A (2020) Numerical spectral examination of EMHD mixed convective flow of Second grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno’s nanofluid model. J Therm Anal Cal. https://doi.org/10.1007/s10973-020-09865-8

    Article  Google Scholar 

  • Rasool G, Zhang T (2019) Darcy-Forchheimer nanofluidic flow manifested with Cattaneo-Christov theory of heat and mass flux over non-linearly stretching surface. PLoS ONE 14(8):e0221302

    Article  CAS  Google Scholar 

  • Rasool G, Shafiq A, Khalique CM, Zhang T (2019) Magnetohydrodynamic Darcy-Forchheimer nanofluid flow over a nonlinear stretching sheet. Phys Scr 94(10):105221

    Article  CAS  Google Scholar 

  • Rasool G, Shafiq A, Khan I, Baleanu D, Nisar KS, Shahzadi G (2020a) Entropy generation and consequences of MHD in Darcy-Forchheimer nanofluid flow bounded by non-linearly stretching surface. Symmetry 12(4):652

    Article  CAS  Google Scholar 

  • Rasool G, Chamkha AJ, Muhammad T, Shafiq A (2020b) Darcy-Forchheimer relation in Casson type MHD nanofluid flow over non-linear stretching surface. Propuls Power Res 9(2):159–168

    Article  Google Scholar 

  • Rasool G, Shafiq A, Khan I, SherifE-Sayed M, Seikh AH (2020c) Influence of single- and multi-wall carbon nanotubes on magnetohydrodynamic stagnation point nanofluid flow over variable thicker surface with concave and convex effects. Mathematics 8(1):104

    Article  Google Scholar 

  • Reddy GJ, Kumar M, Beg OA (2018) Effect of temperature dependent viscosity on entropy generation in transient viscoelastic polymeric fluid flow from an isothermal vertical plate. Phys A 510:426–445

    Article  Google Scholar 

  • Seyyedi SM, Dogonchi AS, Tilehnoee MH, Waqas M, Ganji DD (2020) Investigation of entropy generation in a square inclined cavity using control volume finite element method with aided quadratic Lagrange interpolation functions. Int Commun Heat Mass Transf 110:104398

    Article  Google Scholar 

  • Shafiq A, Khan I, Rasool G, Seikh AH, Sherif El-Sayed M (2019) Significance of double stratification in stagnation point flow of Third-Grade fluid towards a radiative stretching cylinder. Mathematics 7(11):1103

    Article  Google Scholar 

  • Shafiq A, Rasool G, Khalique CM (2020a) The Forchheimer number and porosity factors result in the enhancement of the skin friction, while both slip parameters result in a decline of skin friction. The thermal slip factor results in decreasing both the heat and mass flux rates. Symmetry 12(5):741

    Article  CAS  Google Scholar 

  • Shafiq A, Rasool G, Khalique CM, Aslam S (2020b) Second grade bio-convective nanofluid flow with buoyancy effect and chemical reaction. Symmetry 12(4):621

    Article  CAS  Google Scholar 

  • Shaw S, Dogonchi AS, Nayak MK, Makinde OD (2020) Impact of entropy generation and non-linear thermal radiation on Darchy-Forchheimer flow of -Casson/water nanofluid due to a rotating disk: An application to brain dynamics. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-04453-2

    Article  Google Scholar 

  • Turkyilmazoglu M (2015) A note on the correspondence between certain nanofluid flows and standard fluid flows. J Heat Transf 137:024501

    Article  Google Scholar 

  • Waleed KM, Ahmed KM, Ijaz HT, Alsaedi A (2018) Entropy generation minimization (EGM) of nanofluid flow by a thin moving needle with nonlinear thermal radiation. Phys B 534:113–119

    Article  Google Scholar 

  • Waqas M, Gulzar MM, Dogonchi AS, Javed MA, Khan WA (2019) Darcy-Forchheimer stratified flow of visco-elastic nanofluid subjected to convective conditions. Appl Nanosci 9:2031–2037

    Article  CAS  Google Scholar 

  • Xue QZ (2005) Model for thermal conductivity of carbon nanotube-based composites. Phys B 368:302–307

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskander Tlili.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants involved in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, M.K., Mabood, F., Tlili, I. et al. Entropy optimization analysis on nonlinear thermal radiative electromagnetic Darcy–Forchheimer flow of SWCNT/MWCNT nanomaterials. Appl Nanosci 11, 399–418 (2021). https://doi.org/10.1007/s13204-020-01611-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01611-8

Keywords

Navigation