Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Semiconductor physics of organic–inorganic 2D halide perovskites

Abstract

Achieving technologically relevant performance and stability for optoelectronics, energy conversion, photonics, spintronics and quantum devices requires creating atomically precise materials with tailored homo- and hetero-interfaces, which can form functional hierarchical assemblies. Nature employs tunable sequence chemistry to create complex architectures, which efficiently transform matter and energy, however, in contrast, the design of synthetic materials and their integration remains a long-standing challenge. Organic–inorganic two-dimensional halide perovskites (2DPKs) are organic and inorganic two-dimensional layers, which self-assemble in solution to form highly ordered periodic stacks. They exhibit a large compositional and structural phase space, which has led to novel and exciting physical properties. In this Review, we discuss the current understanding in the structure and physical properties of 2DPKs from the monolayers to assemblies, and present a comprehensive comparison with conventional semiconductors, thereby providing a broad understanding of low-dimensional semiconductors that feature complex organic–inorganic hetero-interfaces.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and 2DPK phase space.
Fig. 2: Phase transitions and mechanical properties.
Fig. 3: Electronic properties of 2DPKs.
Fig. 4: Optical properties and photophysics of 2DPKs.
Fig. 5: Challenges in 2DPK materials design for integrated devices.

Similar content being viewed by others

References

  1. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  Google Scholar 

  2. Moving towards the market. Nat. Mater. 18, 519–519 (2019).

  3. Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    CAS  Google Scholar 

  4. Mokhlisse, R., Couzi, M. & Lassegues, J. C. Lattice dynamics and structural phase transitions in perovskite-type layer compounds. I. the low-frequency inelastic neutron scattering and Raman spectra of the ordered monoclinic phase of (CH3NH3)2MnCl4 and (CH3NH3) 2CdCl4. J. Phys. C Solid State Phys. 16, 1353–1366 (1983). Report of the structural origin of phase transitions in 2DPKs.

    CAS  Google Scholar 

  5. Ishihara, T., Takahashi, J. & Goto, T. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Phys. Rev. B 42, 11099–11107 (1990). First study of the impact of the thickness of the organic spacer layer on the exciton characteristics in RP 2DPK with n = 1.

    CAS  Google Scholar 

  6. Gong, X. et al. Electron–phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550–556 (2018).

    CAS  Google Scholar 

  7. Smith, M. D., Jaffe, A., Dohner, E. R., Lindenberg, A. M. & Karunadasa, H. I. Structural origins of broadband emission from layered Pb–Br hybrid perovskites. Chem. Sci. 8, 4497–4504 (2017).

    CAS  Google Scholar 

  8. Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5, eaav9967 (2019).

    CAS  Google Scholar 

  9. Ballarini, D. & De Liberato, S. Polaritonics: from microcavities to sub-wavelength confinement. Nanophotonics 8, 641–654 (2019).

    CAS  Google Scholar 

  10. Zhai, Y. et al. Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 3, e1700704 (2017). First observation of large Rashba splitting in 2DPKs.

    Google Scholar 

  11. Park, I.-H. et al. Ferroelectricity and Rashba effect in a two-dimensional Dion-Jacobson hybrid organic–inorganic perovskite. J. Am. Chem. Soc. 141, 15972–15976 (2019).

    CAS  Google Scholar 

  12. Wang, S. et al. An unprecedented biaxial trilayered hybrid perovskite ferroelectric with directionally tunable photovoltaic effects. J. Am. Chem. Soc. 141, 7693–7697 (2019).

    CAS  Google Scholar 

  13. Wang, J. et al. Giant nonlinear optical response in 2D perovskite heterostructures. Adv. Opt. Mater. 7, 1900398 (2019).

    Google Scholar 

  14. Zhou, F., Abdelwahab, I., Leng, K., Loh, K. P. & Ji, W. 2D perovskites with giant excitonic optical nonlinearities for high-performance sub-bandgap photodetection. Adv. Mater. 31, 1904155 (2019).

    CAS  Google Scholar 

  15. Grinblat, G. et al. Ultrafast all-optical modulation in 2D hybrid perovskites. ACS Nano 13, 9504–9510 (2019).

    CAS  Google Scholar 

  16. de Jongh, L. J. Experiments on simple magnetic model systems. J. Appl. Phys. 49, 1305–1310 (1978).

    Google Scholar 

  17. Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016). First demonstration of 2DPK solar cell device with power conversion efficiency larger than 10 % and stability over 2,000 hours in operation.

    CAS  Google Scholar 

  18. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016). First report of efficient LEDs using the photoemission from 2DPK thin films.

    CAS  Google Scholar 

  19. Li, L. et al. Tailored engineering of an unusual (C4H9NH3)2(CH3NH3)2Pb3Br10 two-dimensional multilayered perovskite ferroelectric for a high-performance photodetector. Angew. Chem. Int. Ed. 56, 12150–12154 (2017).

    CAS  Google Scholar 

  20. Wang, Z. et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 1–10 (2017).

    Google Scholar 

  21. Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12, 783–789 (2018).

    CAS  Google Scholar 

  22. Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016). Report on the synthesis method and structure of Ruddlesden–Popper 2DPKs with n from 1 to 4.

    CAS  Google Scholar 

  23. Soe, C. M. M. et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: Structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139, 16297–16309 (2017).

    CAS  Google Scholar 

  24. Mao, L. et al. Hybrid Dion–Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140, 3775–3783 (2018).

    CAS  Google Scholar 

  25. Hoffman, J. M. et al. From 2D to 1D electronic dimensionality in halide perovskites with stepped and flat layers using propylammonium as a spacer. J. Am. Chem. Soc. 141, 10661–10676 (2019).

    CAS  Google Scholar 

  26. Li, X. et al. Two-dimensional halide perovskites incorporating straight chain symmetric diammonium ions, (NH3CmH2mNH3)(CH3NH3)n-1PbnI3n+1 (m = 4–9; n = 1–4). J. Am. Chem. Soc. 140, 12226–12238 (2018).

    CAS  Google Scholar 

  27. Bartel, C. J. et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019).

    CAS  Google Scholar 

  28. Nagabhushana, G. P., Shivaramaiah, R. & Navrotsky, A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. Proc. Natl. Acad. Sci. 113, 7717–7721 (2016).

    CAS  Google Scholar 

  29. Soe, C. M. M. et al. Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl. Acad. Sci. 116, 58–66 (2019).

    Google Scholar 

  30. Mitzi, D. B., Feild, C. A., Harrison, W. T. A. & Guloy, A. M. Conducting tin halides with a layered organic-based perovskite structure. Nature 369, 467–469 (1994). First demonstration that 2DPKs can be used as charge transport materials in devices.

    CAS  Google Scholar 

  31. Cao, D. H. et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden–Popper (CH3(CH2)3NH3)2(CH3NH3)n-1SnnI3n+1 Perovskites. ACS Energy Lett. 2, 982–990 (2017).

    CAS  Google Scholar 

  32. Ke, W. et al. Compositional and solvent engineering in Dion–Jacobson 2D perovskites boosts solar cell efficiency and stability. Adv. Energy Mater. 9, 1803384 (2019).

    Google Scholar 

  33. Mitzi, D. B., Chondroudis, K. & Kagan, C. R. Design, structure, and optical properties of organic−inorganic perovskites containing an oligothiophene chromophore. Inorg. Chem. 38, 6246–6256 (1999).

    CAS  Google Scholar 

  34. Gompel, W. T. M. V. et al. Towards 2D layered hybrid perovskites with enhanced functionality: introducing charge-transfer complexes via self-assembly. Chem. Commun. 55, 2481–2484 (2019).

    Google Scholar 

  35. Billing, D. G. & Lemmerer, A. Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 8, 686–695 (2006).

    CAS  Google Scholar 

  36. Ahn, J. et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz. 4, 851–856 (2017).

    CAS  Google Scholar 

  37. Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photonics 12, 528–533 (2018).

    CAS  Google Scholar 

  38. Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019).

    CAS  Google Scholar 

  39. Yuan, C. et al. Chiral lead halide perovskite nanowires for second-order nonlinear optics. Nano Lett. 18, 5411–5417 (2018).

    CAS  Google Scholar 

  40. Yang, C.-K. et al. The first 2D homochiral lead iodide perovskite ferroelectrics: [R- and S-1-(4-chlorophenyl)ethylammonium]2 PbI4. Adv. Mater. https://doi.org/10.1002/adma.201808088 (2019).

  41. Marronnier, A. et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano 12, 3477–3486 (2018).

    CAS  Google Scholar 

  42. Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J. Phys. Chem. Solids 51, 1383–1395 (1990).

    CAS  Google Scholar 

  43. Billing, D. G. & Lemmerer, A. Synthesis, characterization and phase transitions in the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n = 4, 5 and 6. Acta Crystallogr. B 63, 735–747 (2007). Description of the detailed structural changes taking place during phase transitions in 2DPKs with n = 1.

    CAS  Google Scholar 

  44. Ueda, T., Omo, M., Shimizu, K., Ohki, H. & Okuda, T. Ionic motion of phenethylammonium ion in [C6H5CH2CH2NH3]2 PbX4 (X = Cl, Br, I) as studied by 1H NMR. Z. Für Naturforschung A 52, 502–508 (2014).

    Google Scholar 

  45. Barman, S., Venkataraman, N. V., Vasudevan, S. & Seshadri, R. Phase transitions in the anchored organic bilayers of long-chain alkylammonium lead iodides (CnH2n+1NH3)2PbI4; n = 12, 16, 18. J. Phys. Chem. B 107, 1875–1883 (2003).

    CAS  Google Scholar 

  46. Spanopoulos, I. et al. Uniaxial expansion of the 2D Ruddlesden–Popper perovskite family for improved environmental stability. J. Am. Chem. Soc. 141, 5518–5534 (2019).

    CAS  Google Scholar 

  47. Pradeesh, K., Baumberg, J. J. & Vijaya Prakash, G. Temperature-induced exciton switching in long alkyl chain based inorganic-organic hybrids. J. Appl. Phys. 111, 013511 (2012).

    Google Scholar 

  48. Leng, K. et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 17, 908 (2018).

    CAS  Google Scholar 

  49. Horiuchi, S. & Tokura, Y. Organic ferroelectrics. Nat. Mater. 7, 357–366 (2008).

    CAS  Google Scholar 

  50. Li, L. et al. Two-Dimensional Hybrid Perovskite-Type Ferroelectric for Highly Polarization-Sensitive Shortwave Photodetection. J. Am. Chem. Soc. 141, 2623–2629 (2019).

    CAS  Google Scholar 

  51. Zhang, H.-Y. et al. Observation of vortex domains in a two-dimensional lead iodide perovskite ferroelectric. J. Am. Chem. Soc. 142, 4925–4931 (2020).

    CAS  Google Scholar 

  52. Liu, G. et al. Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proc. Natl. Acad. Sci. 115, 8076–8081 (2018).

    CAS  Google Scholar 

  53. Yin, T. et al. Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes. J. Am. Chem. Soc. 141, 1235–1241 (2019).

    CAS  Google Scholar 

  54. Chen, Y. et al. Emission enhancement and bandgap retention of a two-dimensional mixed cation lead halide perovskite under high pressure. J. Mater. Chem. A 7, 6357–6362 (2019).

    CAS  Google Scholar 

  55. Yuan, Y. et al. Large band gap narrowing and prolonged carrier lifetime of (C4H9NH3)2PbI4 under high pressure. Adv. Sci. 6, 1900240 (2019).

    Google Scholar 

  56. Liu, S. et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 5, eaav9445 (2019).

    CAS  Google Scholar 

  57. Kong, L. et al. Highly tunable properties in pressure-treated two-dimensional Dion–Jacobson perovskites. Proc. Natl Acad. Sci. USA 117, 16121–16126 (2020).

    CAS  Google Scholar 

  58. Tu, Q. et al. Stretching and breaking of ultrathin 2D hybrid organic–inorganic perovskites. ACS Nano 12, 10347–10354 (2018).

    CAS  Google Scholar 

  59. Ferreira, A. C. et al. Elastic softness of hybrid lead halide perovskites. Phys. Rev. Lett. 121, 085502 (2018).

    CAS  Google Scholar 

  60. Tu, Q. et al. Exploring the factors affecting the mechanical properties of 2D hybrid organic–inorganic perovskites. ACS Appl. Mater. Interfaces 12, 20440–20447 (2020). Report of the mechanical properties of 2DPKs with various composition and structure.

    CAS  Google Scholar 

  61. Liu, K. et al. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 14, 5097–5103 (2014).

    CAS  Google Scholar 

  62. Root, S. E., Savagatrup, S., Printz, A. D., Rodriquez, D. & Lipomi, D. J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 117, 6467–6499 (2017).

    CAS  Google Scholar 

  63. Kepenekian, M. et al. Concept of lattice mismatch and emergence of surface states in two-dimensional hybrid perovskite quantum wells. Nano Lett. 18, 5603–5609 (2018).

    CAS  Google Scholar 

  64. Blancon, J.-C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).

    CAS  Google Scholar 

  65. Blancon, J.-C. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 9, 2254 (2018).

    Google Scholar 

  66. Price, C. C., Blancon, J.-C., Mohite, A. D. & Shenoy, V. B. Interfacial electromechanics predicts phase behavior of 2d hybrid halide perovskites. ACS Nano 14, 3353–3364 (2020).

    CAS  Google Scholar 

  67. Mao, L. et al. Seven-layered 2D hybrid lead iodide perovskites. Chem 5, 2593–2604 (2019).

    CAS  Google Scholar 

  68. Tu, Q. et al. Out-of-plane mechanical properties of 2D hybrid organic–inorganic perovskites by nanoindentation. ACS Appl. Mater. Interfaces 10, 22167–22173 (2018).

    CAS  Google Scholar 

  69. Li, J. et al. Cs2PbI2Cl2, all-inorganic two-dimensional Ruddlesden–Popper mixed halide perovskite with optoelectronic response. J. Am. Chem. Soc. 140, 11085–11090 (2018).

    CAS  Google Scholar 

  70. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  71. Yang, A. et al. Giant enhancement of photoluminescence emission in WS2-two-dimensional perovskite heterostructures. Nano Lett. 19, 4852–4860 (2019).

    Google Scholar 

  72. Klingshirn, P. C. F. Semiconductor Optics (Springer-Verlag Berlin Heidelberg, 2012).

  73. Traore, B. et al. Composite nature of layered hybrid perovskites: assessment on quantum and dielectric confinements and band alignment. ACS Nano 12, 3321–3332 (2018).

    CAS  Google Scholar 

  74. Sichert, J. A. et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 15, 6521–6527 (2015).

    CAS  Google Scholar 

  75. Papavassiliou, G. C., Koutselas, I. B., Terzis, A. & Raptopoulou, C. P. Some natural three-and lower-dimensional semiconductor systems with metal-halide units. MRS Online Proc. Libr. Arch. 358, 283–288 (1994).

    Google Scholar 

  76. Even, J., Pedesseau, L. & Katan, C. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites. ChemPhysChem 15, 3733–3741 (2014).

    CAS  Google Scholar 

  77. Tanaka, K. & Kondo, T. Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals. Sci. Technol. Adv. Mater. 4, 599–604 (2003).

    CAS  Google Scholar 

  78. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Google Scholar 

  79. Keldysh, L. V. Coulomb interaction in thin semiconductor and semimetal films. Sov. J. Exp. Theor. Phys. Lett. 29, 658 (1979).

    Google Scholar 

  80. Stoumpos, C. C. et al. High members of the 2D Ruddlesden-Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem 2, 427–440 (2017).

    CAS  Google Scholar 

  81. Todd, S. B. et al. Detection of Rashba spin splitting in 2D organic-inorganic perovskite via precessional carrier spin relaxation. APL Mater. 7, 081116 (2019).

    Google Scholar 

  82. Yin, J. et al. Layer-dependent Rashba band splitting in 2D hybrid perovskites. Chem. Mater. 30, 8538–8545 (2018).

    CAS  Google Scholar 

  83. Niesner, D. et al. Structural fluctuations cause spin-split states in tetragonal (CH3NH3)PbI3 as evidenced by the circular photogalvanic effect. Proc. Natl. Acad. Sci. 115, 9509–9514 (2018).

    CAS  Google Scholar 

  84. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    CAS  Google Scholar 

  85. Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019).

    CAS  Google Scholar 

  86. Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999).

    CAS  Google Scholar 

  87. Milot, R. L. et al. Charge-carrier dynamics in 2D hybrid metal–halide perovskites. Nano Lett. 16, 7001–7007 (2016).

    CAS  Google Scholar 

  88. Venkatesan, N. R., Labram, J. G. & Chabinyc, M. L. Charge-carrier dynamics and crystalline texture of layered Ruddlesden–Popper hybrid lead iodide perovskite thin films. ACS Energy Lett. 3, 380–386 (2018).

    CAS  Google Scholar 

  89. Guo, Z., Wu, X., Zhu, T., Zhu, X. & Huang, L. Electron–phonon scattering in atomically thin 2D perovskites. ACS Nano 10, 9992–9998 (2016).

    CAS  Google Scholar 

  90. Thouin, F. et al. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 18, 349–356 (2019).

    CAS  Google Scholar 

  91. Guo, P. et al. Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites. Nat. Commun. 9, 1–9 (2018).

    Google Scholar 

  92. Straus, D. B. et al. Direct observation of electron–phonon coupling and slow vibrational relaxation in organic–inorganic hybrid perovskites. J. Am. Chem. Soc. 138, 13798–13801 (2016).

    CAS  Google Scholar 

  93. Baranowski, M. et al. Phase-transition-induced carrier mass enhancement in 2D Ruddlesden-Popper perovskites. ACS Energy Lett. 4, 2386–2392 (2019).

    CAS  Google Scholar 

  94. Kang, J. & Wang, L.-W. Dynamic disorder and potential fluctuation in two-dimensional perovskite. J. Phys. Chem. Lett. 8, 3875–3880 (2017).

    CAS  Google Scholar 

  95. Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

    Google Scholar 

  96. Seeger, K. Semiconductor Physics: an Introduction (Springer Science & Business Media, 2013).

  97. Ni, L. et al. Real-time observation of exciton–phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano 11, 10834–10843 (2017).

    CAS  Google Scholar 

  98. Matsushima, T. et al. Solution-processed organic–inorganic perovskite field-effect transistors with high hole mobilities. Adv. Mater. 28, 10275–10281 (2016).

    CAS  Google Scholar 

  99. Gélvez-Rueda, M. C. et al. Interconversion between free charges and bound excitons in 2D hybrid lead halide perovskites. J. Phys. Chem. C 121, 26566–26574 (2017).

    Google Scholar 

  100. Liu, Y., Xiao, H. & Goddard, W. A. Two-dimensional halide perovskites: tuning electronic activities of defects. Nano Lett. 16, 3335–3340 (2016).

    CAS  Google Scholar 

  101. Egger, D. A. et al. What remains unexplained about the properties of halide perovskites? Adv. Mater. 30, 1800691 (2018).

    Google Scholar 

  102. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    CAS  Google Scholar 

  103. Bastard, G. Wave Mechanics Applied to Semiconductor Heterostructures (Les Éditions de Physique, 1988).

  104. Wu, X. et al. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089–2096 (2015).

    CAS  Google Scholar 

  105. Pandey, M., Jacobsen, K. W. & Thygesen, K. S. Band gap tuning and defect tolerance of atomically thin two-dimensional organic–inorganic halide perovskites. J. Phys. Chem. Lett. 7, 4346–4352 (2016).

    CAS  Google Scholar 

  106. Zhang, Z., Fang, W.-H., Long, R. & Prezhdo, O. V. Exciton dissociation and suppressed charge recombination at 2D perovskite edges: key roles of unsaturated halide bonds and thermal disorder. J. Am. Chem. Soc. 141, 15557–15566 (2019).

    CAS  Google Scholar 

  107. Xiao, X. et al. Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 3, 684–688 (2018).

    CAS  Google Scholar 

  108. Zhang, Z., Fang, W.-H., Tokina, M. V., Long, R. & Prezhdo, O. V. Rapid decoherence suppresses charge recombination in multi-layer 2D halide perovskites: time-domain ab initio analysis. Nano Lett. 18, 2459–2466 (2018).

    CAS  Google Scholar 

  109. Neutzner, S. et al. Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Phys. Rev. Mater. 2, 064605 (2018).

    CAS  Google Scholar 

  110. Abdel-Baki, K. et al. Exciton dynamics and non-linearities in two-dimensional hybrid organic perovskites. J. Appl. Phys. 119, 064301 (2016).

    Google Scholar 

  111. Chen, X. et al. Impact of layer thickness on the charge carrier and spin coherence lifetime in two-dimensional layered perovskite single crystals. ACS Energy Lett. 3, 2273–2279 (2018).

    CAS  Google Scholar 

  112. Delport, G. et al. Exciton–exciton annihilation in two-dimensional halide perovskites at room temperature. J. Phys. Chem. Lett. 10, 5153–5159 (2019).

    CAS  Google Scholar 

  113. Kitazawa, N., Aono, M. & Watanabe, Y. Synthesis and luminescence properties of lead-halide based organic-inorganic layered perovskite compounds (CnH2n+1NH3)2PbI4 (n=4, 5, 7, 8 and 9). J. Phys. Chem. Solids 72, 1467–1471 (2011).

    CAS  Google Scholar 

  114. Niu, T. et al. Reduced-dimensional perovskite enabled by organic diamine for efficient photovoltaics. J. Phys. Chem. Lett. 10, 2349–2356 (2019).

    CAS  Google Scholar 

  115. Guo, P. et al. Hyperbolic dispersion arising from anisotropic excitons in two-dimensional perovskites. Phys. Rev. Lett. 121, 127401 (2018).

    CAS  Google Scholar 

  116. Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

    Google Scholar 

  117. Blancon, J.-C. et al. The effects of electronic impurities and electron–hole recombination dynamics on large-grain organic–inorganic perovskite photovoltaic efficiencies. Adv. Funct. Mater. 26, 4283–4292 (2016).

    CAS  Google Scholar 

  118. Takagi, H., Sato, M., Takeoka, Y., Kunugita, H. & Ema, K. Influence of image charge effect on exciton fine structure in an organic-inorganic quantum well material. Phys. Rev. B 87, 125421 (2013).

    Google Scholar 

  119. Tanaka, K. et al. Electronic and excitonic structures of inorganic–organic perovskite-type quantum-well crystal (C4H9NH3)2PbBr4. Jpn J. Appl. Phys. 44, 5923–5932 (2005).

    CAS  Google Scholar 

  120. Do, T. T. H. et al. Bright exciton fine-structure in two-dimensional lead halide perovskites. Nano Lett. 20, 5141–5148 (2020).

    CAS  Google Scholar 

  121. Kahmann, S., Tekelenburg, E. K., Duim, H., Kamminga, M. E. & Loi, M. A. Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden–Popper perovskites. Nat. Commun. 11, 2344 (2020).

    CAS  Google Scholar 

  122. Elkins, M. H. et al. Biexciton resonances reveal exciton localization in stacked perovskite quantum wells. J. Phys. Chem. Lett. 8, 3895–3901 (2017).

    CAS  Google Scholar 

  123. Mao, L. et al. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10-xClx. J. Am. Chem. Soc. 139, 11956–11963 (2017).

    CAS  Google Scholar 

  124. Peng, W. et al. Ultralow self-doping in two-dimensional hybrid perovskite single crystals. Nano Lett. 17, 4759–4767 (2017).

    CAS  Google Scholar 

  125. Du, K. et al. Two-dimensional lead(II) halide-based hybrid perovskites templated by acene alkylamines: crystal structures, optical properties, and piezoelectricity. Inorg. Chem. 56, 9291–9302 (2017).

    CAS  Google Scholar 

  126. Filip, M. R., Eperon, G. E., Snaith, H. J. & Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, 5757 (2014).

    CAS  Google Scholar 

  127. Galkowski, K. et al. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 9, 962–970 (2016).

    CAS  Google Scholar 

  128. Tanaka, K. et al. Image charge effect on two-dimensional excitons in an inorganic-organic quantum-well crystal. Phys. Rev. B 71, 045312 (2005).

    Google Scholar 

  129. Muljarov, E. A., Tikhodeev, S. G., Gippius, N. A. & Ishihara, T. Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds. Phys. Rev. B Condens. Matter 51, 14370–14378 (1995).

    CAS  Google Scholar 

  130. Zhang, Q., Chu, L., Zhou, F., Ji, W. & Eda, G. Excitonic properties of chemically synthesized 2D organic–inorganic hybrid perovskite nanosheets. Adv. Mater. 30, 1704055 (2018).

    Google Scholar 

  131. Kitazawa, N. Optical absorption and photoluminescence properties of Pb(I, Br)-based two-dimensional layered perovskite. Jpn J. Appl. Phys. 36, 2272 (1997).

    CAS  Google Scholar 

  132. Raja, A. et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 14, 832–837 (2019).

    CAS  Google Scholar 

  133. Ikarashi, N., Baba, T. & Ishida, K. High‐resolution transmission electron microscopy of vicinal AlAs/GaAs interfacial structure. Appl. Phys. Lett. 62, 1632–1634 (1993).

    CAS  Google Scholar 

  134. Tanaka, M. & Sakaki, H. MBE growth and optical properties of novel corrugated-interface quantum wells. Jpn. J. Appl. Phys. 27, L2025 (1988).

    CAS  Google Scholar 

  135. Cho, Y. & Berkelbach, T. C. Optical properties of layered hybrid organic–inorganic halide perovskites: a tight-binding GW-BSE study. J. Phys. Chem. Lett. 6189–6196 (2019).

  136. Koutselas, I. B., Ducasse, L. & Papavassiliou, G. C. Electronic properties of three- and low-dimensional semiconducting materials with Pb halide and Sn halide units. J. Phys. Condens. Matter 8, 1217 (1996).

    CAS  Google Scholar 

  137. Seitz, M. et al. Exciton diffusion in two-dimensional metal-halide perovskites. Nat. Commun. 11, 2035 (2020).

    CAS  Google Scholar 

  138. Lee, K. J. et al. Perovskite-based artificial multiple quantum wells. Nano Lett. 19, 3535–3542 (2019).

    CAS  Google Scholar 

  139. Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    CAS  Google Scholar 

  140. Latini, S., Olsen, T. & Thygesen, K. S. Excitons in van der Waals heterostructures: the important role of dielectric screening. Phys. Rev. B 92, 245123 (2015).

    Google Scholar 

  141. Qin, C. et al. Triplet management for efficient perovskite light-emitting diodes. Nat. Photonics 14, 10–75 (2019).

    Google Scholar 

  142. Abdelwahab, I. et al. Highly enhanced third-harmonic generation in 2D perovskites at excitonic resonances. ACS Nano 12, 644–650 (2018).

    CAS  Google Scholar 

  143. Gan, Z. et al. The dominant energy transport pathway in halide perovskites: photon recycling or carrier diffusion? Adv. Energy Mater. 9, 1900185 (2019).

    Google Scholar 

  144. Saouma, F. O., Stoumpos, C. C., Wong, J., Kanatzidis, M. G. & Jang, J. I. Selective enhancement of optical nonlinearity in two-dimensional organic-inorganic lead iodide perovskites. Nat. Commun. 8, 1–8 (2017).

    Google Scholar 

  145. Abdelwahab, I. et al. Giant and tunable optical nonlinearity in single-crystalline 2D perovskites due to excitonic and plasma effects. Adv. Mater. 31, 1902685 (2019).

    Google Scholar 

  146. Zhang, S. et al. Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films. ACS Nano 9, 7142–7150 (2015).

    CAS  Google Scholar 

  147. Papavassiliou, G. C. & Koutselas, I. B. Structural, optical and related properties of some natural three- and lower-dimensional semiconductor systems. Synth. Met. 71, 1713–1714 (1995).

    CAS  Google Scholar 

  148. Nazarenko, O. et al. Luminescent and photoconductive layered lead halide perovskite compounds comprising mixtures of cesium and guanidinium cations. Inorg. Chem. 56, 11552–11564 (2017).

    CAS  Google Scholar 

  149. Haldar, S. et al. Effect of carrier confinement on effective mass of excitons and estimation of ultralow disorder in AlxGa1-xAs/GaAs quantum wells by magneto-photoluminescence. Sci. Rep. 7, 4905 (2017).

    CAS  Google Scholar 

  150. Yang, J. & Wise, F. W. Electronic states of lead-salt nanosheets. J. Phys. Chem. C 119, 26809–26816 (2015).

    CAS  Google Scholar 

  151. Goryca, M. et al. Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields. Nat. Commun. 10, 1–12 (2019).

    CAS  Google Scholar 

  152. Tsai, H. et al. Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat. Commun. 9, 2130 (2018).

    Google Scholar 

  153. Quintero-Bermudez, R. et al. Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nat. Mater. 17, 900 (2018).

    CAS  Google Scholar 

  154. Zhang, F. et al. Advances in two-dimensional organic–inorganic hybrid perovskites. Energy Environ. Sci. 13, 1154–1186 (2020).

    CAS  Google Scholar 

  155. Wang, Y.-K. et al. Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters. Nat. Commun. 11, 3674 (2020).

    CAS  Google Scholar 

  156. He, T. et al. Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nat. Commun. 11, 1672 (2020).

    CAS  Google Scholar 

  157. Hoffman, J. M. et al. In situ grazing-incidence wide-angle scattering reveals mechanisms for phase distribution and disorientation in 2D halide perovskite films. Adv. Mater. 32, 2002812 (2020).

    CAS  Google Scholar 

  158. Chen, A. Z. et al. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nat. Commun. 9, 1336 (2018).

    Google Scholar 

  159. Hu, J. et al. Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nat. Commun. 10, 1276 (2019).

    Google Scholar 

  160. Di, D. et al. High-performance light-emitting diodes based on carbene-metal-amides. Science 356, 159–163 (2017).

    CAS  Google Scholar 

  161. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    CAS  Google Scholar 

  162. Raghavan, C. M. et al. Low-threshold lasing from 2D homologous organic–inorganic hybrid Ruddlesden–Popper perovskite single crystals. Nano Lett. 18, 3221–3228 (2018).

    CAS  Google Scholar 

  163. Kim, H. et al. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun. 9, 4893 (2018).

    Google Scholar 

  164. Quan, L. N. et al. Perovskites for next-generation optical sources. Chem. Rev. 119, 7444–7477 (2019).

    CAS  Google Scholar 

  165. Tsai, H. et al. Stable light-emitting diodes using phase-pure Ruddlesden–Popper layered perovskites. Adv. Mater. 30, 1704217 (2018).

    Google Scholar 

  166. Luo, T. et al. Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%. Adv. Mater. 31, 1903848 (2019).

    CAS  Google Scholar 

  167. Lin, Y. et al. Unveiling the operation mechanism of layered perovskite solar cells. Nat. Commun. 10, 1008 (2019).

    Google Scholar 

  168. Mohite, A. D. & Blancon, J.-C. Scaling-up phase selection. Nat. Mater. 17, 1058–1059 (2018).

    CAS  Google Scholar 

  169. Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGehee, M. D. & Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53, 11232–11235 (2014).

    CAS  Google Scholar 

  170. Fang, H.-H. et al. Unravelling Light-Induced Degradation of Layered Perovskite Crystals and Design of Efficient Encapsulation for Improved Photostability. Adv. Funct. Mater. 28, 1800305 (2018).

    Google Scholar 

  171. Quan, L. N. et al. Edge stabilization in reduced-dimensional perovskites. Nat. Commun. 11, 1–9 (2020).

    Google Scholar 

  172. Shang, Y. et al. Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure. Sci. Adv. 5, eaaw8072 (2019).

    CAS  Google Scholar 

  173. Wei, Y., Audebert, P., Galmiche, L., Lauret, J.-S. & Deleporte, E. Synthesis, optical properties and photostability of novel fluorinated organic–inorganic hybrid (R–NH3)2PbX4 semiconductors. J. Phys. Appl. Phys. 46, 135105 (2013).

    Google Scholar 

  174. Sadhu, S., Buffeteau, T., Sandrez, S., Hirsch, L. & Bassani, D. M. Observing the migration of hydrogen species in hybrid perovskite materials through D/H isotope exchange. J. Am. Chem. Soc. 142, 10431–10437 (2020).

    CAS  Google Scholar 

  175. Wolff, C. M. et al. Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells. ACS Nano 14, 1445–1456 (2020).

    CAS  Google Scholar 

  176. Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019).

    CAS  Google Scholar 

  177. Grancini, G. et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 1–8 (2017).

    Google Scholar 

  178. Sutanto, A. A. et al. In situ analysis reveals the role of 2D perovskite in preventing thermal-induced degradation in 2D/3D perovskite interfaces. Nano Lett. 20, 3992–3998 (2020).

    CAS  Google Scholar 

  179. Dong, Q., Lei, L., Mendes, J. & So, F. Operational stability of perovskite light emitting diodes. J. Phys. Mater. 3, 012002 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

The work at Rice University was supported by start-up funds under the molecular nanotechnology initiative and also the DOE-EERE 2022-1652 program. J.E. acknowledges the financial support from the Institut Universitaire de France. At Northwestern, work on the fundamental science of metal halides is mainly supported by the Department of Energy, Office of Science, Basic Energy Sciences, under grant SC0012541.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya D. Mohite.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Giulia Grancini, Aditya Sadhanala and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blancon, JC., Even, J., Stoumpos, C.C. et al. Semiconductor physics of organic–inorganic 2D halide perovskites. Nat. Nanotechnol. 15, 969–985 (2020). https://doi.org/10.1038/s41565-020-00811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-00811-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing