Skip to main content
Log in

Study of Amoxicillin Adsorption on the Silanized Multiwalled Carbon Nanotubes: Isotherms, Kinetics, and Thermodynamics Study

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this research, multiwalled carbon nanotubes (MWCNTs) were firstly oxidized with HNO3/H2SO4 mixture and then functionalized with silane groups and were used for the removal of amoxicillin (AMX) as one of the most consumed antibiotics from the solution media. In addition, NH4Cl-induced activated carbon (NAC) was also prepared as another adsorbent. Then the adsorption process was investigated by using silanized oxidized MWCNTs (S-F-MWCNTs). Physicochemical characterization of MWCNTs, F‑MWCNTs and S-F-MWCNTs was investigated by FTIR, FESEM, EDS, BET/BJH, TGA, and CA techniques. Also, NAC was characterized by FTIR technique. The effect of the operational variables such as pH, adsorbent dosage, contact time, sorbate concentration and temperature on the removal efficiency of the S‑F-MWCNTs adsorbent was studied in details by batch procedure. The results showed that maximum adsorption efficiency can be achieved under the optimized conditions of pH 7.0, adsorbate concentration = 70.0 mg/L, contact time = 45.0 min, S-F-MWCNTs adsorbent dosage = 0.020 g, and temperature = 25.0°C. Isothermic studies have showed that the Redlich–Peterson equation with a correlation coefficient of 0.995 and the lowest error rate has the highest correlation with the experimental data. The adsorption kinetics results show that AMX adsorption process was well-described by pseudo-second-order kinetic model. Thermodynamic parameters of the adsorption process were also calculated revealing that the adsorption of AMX onto S‑F‑MWCNTs and NAC is an exothermic and spontaneous process. Based on the experimental results, S‑F‑MWCNTs were regarded as an acceptable adsorbent for the removal of AMX from aqueous solutions. The AMX adsorption data under the optimum conditions via S-F-MWCNTs and NAC adsorbents revealed that the adsorption efficiency is desirable and satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. Homem and L. Santos, J. Environ. Manage. 92, 2304 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. M. Magureanu, D. Piroi, N. B. Mandache, V. David, A. Medvedovici, C. Bradu, and V. I. Parvulescu, Water Res. 45, 3407 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. K. He, A. D. Soares, H. Adejumo, M. McDiarmid, K. Squibb, and L. Blaney, J. Pharmaceut. Biomed. 106, 136 (2015).

    Article  CAS  Google Scholar 

  4. K. Bondarczuk and Z. Piotrowska-Seget, Sci. Total. Environ. 650, 2951 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. W. Qiu, J. Sun, M. Fang, S. Luo, Y. Tian, P. Dong, B. Xu, and C. Zheng, Sci. Total. Environ. 653, 334 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. S. H. Zyoud, S. W. Al-Jabi, W. M. Sweileh, and R. Awang, Ann. Occup. Environ. Med. 28, 40 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. H. Zhang, P. Liu, Y. Feng, and F. Yang, Mar. Pollut. Bull. 73, 282 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. A. A. El Rahman, W. M. A. El-Wafa, and A. N. Ibrahim, J. Microbiol. Biotech. Res. 5, 17 (2015).

    Google Scholar 

  9. T. H. Le, C. Ng, N. H. Tran, H. Chen, and K. Y. H. Gin, Water. Res. 145, 498 (2018).

  10. B. Chen, L. Lin, L. Fang, Y. Yang, E. Chen, K. Yuan, and T. Luan, Water. Res. 134, 200 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. E. K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, and S. Ismadji, Water. Res. 43, 2419 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. J. Roy, Chemistry, Techniques and Technology (Elsevier, Amsterdam, 2011).

    Google Scholar 

  13. F. Javier Benitez, J. L. Acero, F. J. Real, Z. Rold, and E. Rodriguez, J. Chem. Technol. Biotechnol. 86, 858 (2011).

    Article  CAS  Google Scholar 

  14. A. Morse and A. Jackson, Water, Air, Soil Pollut. 157, 117 (2004).

    Article  CAS  Google Scholar 

  15. P. Zhou, C. Su, B. Li, and Y. Qian, J. Environ. Eng. 132, 129 (2006).

    Article  CAS  Google Scholar 

  16. E. S. Elmolla and M. Chaudhuri, J. Hazard. Mater. 192, 1418 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. R. Andreozzi, M. Canterino, R. Marotta, and N. Paxeus, J. Hazard. Mater. 122, 243 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. N. Elmi Fard and R. Fazaeli, Russ. J. Phys. Chem. A 92, 2835 (2018).

    Article  Google Scholar 

  19. M. A. Zazouli, H. Susanto, S. Nasseri, and M. Ulbricht, Water. Res. 43, 3270 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. R. Zandipak and S. Sobhanardakani, Clean. Technol. Environ. 20, 871 (2018).

    Article  CAS  Google Scholar 

  21. A. Mohammadi, M. Kazemipour, H. Ranjbar, R. B. Walker, and M. Ansari, Fullerenes Nanotubes Carbon Nanostruct. 23, 165 (2015).

    Article  CAS  Google Scholar 

  22. A. A. Babaei, E. C. Lima, A. Takdastan, N. Alavi, G. Goudarzi, M. Vosoughi, G. Hassani, and M. Shirmardi, Water. Sci. Technol. 74, 1202 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. M. R. Cunha, E. C. Lima, N. F. G. M. Cimirro, P. S. Thue, S. L. P. Dias, M. A. Gelesky, G. L. Dotto, G. S. Reis, and F. A. Pavan, Environ. Sci. Pollut. Res. 25, 23315 (2018).

    Article  CAS  Google Scholar 

  24. F. M. Kasperiski, E. C. Lima, C. S. Umpierres, G. S. dos Reis, P. S. Thue, D. R. Lima, S. L. P. Dias, C. Saucier, and J. B. da Costa, J. Clean. Prod. 197, 919 (2018).

    Article  CAS  Google Scholar 

  25. P. S. Thue, G. S. dos Reis, E. C. Lima, J. M. Sieliechi, G. L. Dotto, A. G. N. Wamba, S. L. P. Dias, and F. A. Pavan, Res. Chem. Intermed. 43, 1063 (2017).

    Article  CAS  Google Scholar 

  26. S. Zhang, Y. Dong, Z. Yang, W. Yang, J. Wu, and C. Dong, Chem. Eng. J. 304, 325 (2016).

    Article  CAS  Google Scholar 

  27. W. Xiong, Zh. Zeng, X. Li, G. Zeng, R. Xiao, Zh. Hui Yang, Y. Zhou, Ch. Zhang, M. Cheng, L. Hu, Ch. Yun Zhou, L. Qin, R. Xu, and Y. Zhang, Chemosphere 210, 1061 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. D. Wang, Zh. Dai, X. Shu, P. Bian, L. Wu, D. Cai, and Zh. Wu, Environ. Sci. Nano 5, 2978 (2018).

    Article  CAS  Google Scholar 

  29. F. Yu, Y. Li, Sh. Han, and J. Ma, Chemosphere 153, 365 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Y. Chen and Z. Li, Russ. J. Phys. Chem. A 90, 2619 (2016).

    Article  CAS  Google Scholar 

  31. Ch. Qu, F. Cheng, H. Su, and Y. Zhao, Russ. J. Phys. Chem. A 90, 2230 (2016).

    Article  CAS  Google Scholar 

  32. H. Zhu, T. Chen, J. Liu, and D. Li, RSC Adv. 8, 2616 (2018).

  33. S. M. Yuen, C. C. M. Ma, C. L. Chiang, J. A. Chang, S. W. Huang, S. C. Chen, C. Y. Chuang, C. C. Yang, and M. H. Weid, Composites, Part A 38, 2527 (2007).

    Article  CAS  Google Scholar 

  34. A. Eitan, K. Jiang, D. Dukes, R. Andrews, and L. S. Schadler, Chem. Mater. 15, 3198 (2003).

    Article  CAS  Google Scholar 

  35. F. Avilés, J. V. Cauich-Rodríguez, L. Moo-Tah, A. May-Pat, and R. Vargas-Coronado, Carbon 47, 2970 (2009).

    Article  CAS  Google Scholar 

  36. P. C. Ma, J. K. Kim, and B. Z. Tang, Carbon 44, 3232 (2006).

    Article  CAS  Google Scholar 

  37. L. G. Britcher, D. C. Kehoe, J. G. Matisons, and A. G. Swincer, Macromolecules 28, 3110 (1995).

    Article  CAS  Google Scholar 

  38. G. Moussavi, A. Alahabadi, K. Yaghmaeian, and M. Eskandari, Chem. Eng. J. 217, 119 (2013).

    Article  CAS  Google Scholar 

  39. F. Avilés, J. V. Cauich-Rodríguez, L. Moo-Tah, A. May-Pat, and R. Vargas-Coronado, Carbon 47, 2970 (2009).

    Article  CAS  Google Scholar 

  40. P. C. Ma, J. K. Kim, and B. Z. Tang, Carbon 44, 3232 (2006).

    Article  CAS  Google Scholar 

  41. L. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, and J. Judek, Alloys Compd. 501, 77 (2010).

    Article  CAS  Google Scholar 

  42. C. Velasco-Santos, A. L. Martinez-Hernandez, W. Brostow, and V. M. Castaño, J. Nanometer. 3, 251 (2011).

  43. M. Lavorgna, V. Romeo, A. Martone, M. Zarrelli, M. Giordano, G. G. Buonocore, M. Z. Qu, G. X. Fei, and H. S. Xia, Eur. Polym. J. 49, 428 (2013).

    Article  CAS  Google Scholar 

  44. R. Pierotti and J. Rouquerol, Pure Appl. Chem. 57, 603 (1985).

    Article  Google Scholar 

  45. R. Saadi, Z. Saadi, R. Fazaeli, and N. Elmi Fard, Korean J. Chem. Eng. 32, 787 (2019).

    Article  CAS  Google Scholar 

  46. X. Han, W. Wang, and X. Ma, Chem. Eng. J. 171, 1 (2011)

    Article  CAS  Google Scholar 

  47. F. M. Menger, M. Markazi, N. M. Mahmoodi, H. Nikkor, and A. R. Tehrani-Bagha, Desalination 266, 247 (2011).

    Google Scholar 

  48. N. Elmi Fard, R. Fazaeli, and R. Ghiasi, Chem. Eng. Technol. 39, 149 (2015).

    Article  CAS  Google Scholar 

  49. J. Fu, Z. Chen, M. Wang, S. Liu, J. Zhang, J. Zhang, and Q. Xu, Chem. Eng. J. 259, 53 (2015).

    Article  CAS  Google Scholar 

  50. H. N. Tran, S. J. You, and H. P. Chao, J. Environ. Chem. Eng. 4, 2671 (2016).

    Article  CAS  Google Scholar 

  51. T. L. Silva, A. Ronix, O. Pezoti, L. S. Souza, P. K. Leandro, K. C. Bedin, and V. C. Almeida, Chem. Eng. J. 303, 467 (2016).

    Article  CAS  Google Scholar 

  52. S. Pandey and S. Tiwari, Carbohydr. Polym. 134, 646 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. L. Wang, F. Zhang, X. Gao, T. Luo, L. Xu, and Guoji Liu, Russ. J. Phys. Chem. A 91, 1432 (2017).

    Article  CAS  Google Scholar 

  54. A. N. Vul’fson and O. O. Borodin, Russ. J. Phys. Chem. A 81, 510 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Aghaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elham Ahangaran, Aghaie, H. & Fazaeli, R. Study of Amoxicillin Adsorption on the Silanized Multiwalled Carbon Nanotubes: Isotherms, Kinetics, and Thermodynamics Study. Russ. J. Phys. Chem. 94, 2818–2828 (2020). https://doi.org/10.1134/S0036024420130038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420130038

Keywords:

Navigation