Skip to main content
Log in

Collective Spin Glass State in Nanoscale Particles of Ferrihydrite

  • XXVIII INTERNATIONAL SYMPOSIUM “NANOSTRUCTURES: PHYSICS AND TECHNOLOGY”, MINSK, REPUBLIC OF BELARUS, SEPTEMBER, 2020. SPIN RELATED PHENOMENA IN NANOSTRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Ferromagnetic resonance was used to study three types of ferrihydrite nanoparticles: nanoparticles formed as a result of the cultivation of microorganisms Klebsiella oxytoca; chemically prepared ferrihydrite nanoparticles; chemically prepared ferrihydrite nanoparticles doped with Cu. It is established from the ferromagnetic resonance data that the frequency-field dependence (in the temperature range ТP < T < T*) is described by the expression: 2πν/γ = НR + HA(T = 0)(1 – T/Т*), where γ is the gyromagnetic ratio, HR is the resonance field. The induced anisotropy HA is due to the spin-glass state of the near-surface regions. TP temperature characterizes the energy of the interparticle interaction of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. S. Seehra, V. S. Babu, A. Manivannan, and J. W. Lynn, Phys. Rev. B 61, 3513 (2000).

    Article  ADS  Google Scholar 

  2. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, S. I. Popkov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and R. N. Yaroslavtsev, J. Appl. Phys. 120, 183903 (2016).

    Article  ADS  Google Scholar 

  3. S. A. Makhlouf, F. T. Parker, and A. E. Berkowitz, Phys. Rev. B 55, R14717 (1997).

    Article  ADS  Google Scholar 

  4. A. Punnoose, T. Phanthavady, M. S. Seehra, N. Shah, and G. P. Huffman, Phys. Rev. B 69, 54425 (2004).

    Article  ADS  Google Scholar 

  5. A. Punnoose, M. S. Seehra, J. van Tol, and L. C. Brunel, J. Magn. Magn. Mater. 288, 168 (2005).

    Article  ADS  Google Scholar 

  6. S. V. Stolyar, R. N. Yaroslavtsev, R. S. Iskhakov, O. A. Bayukov, D. A. Balaev, A. A. Dubrovskii, A. A. Krasikov, V. P. Ladygina, A. M. Vorotynov, and M. N. Volochaev, Phys. Solid State 59, 555 (2017).

    Article  ADS  Google Scholar 

  7. S. V. Stolyar, D. A. Balaev, V. P. Ladygina, A. I. Pankrats, R. N. Yaroslavtsev, D. A. Velikanov, and R. S. Iskhakov, JETP Lett. 111, 183 (2020).

    Article  ADS  Google Scholar 

  8. S. Morup, D. E. Madsen, C. Frandsen, C. R. H. Bahl, and M. F. Hansen, J. Phys.: Condens. Matter 19, 213202 (2007).

    ADS  Google Scholar 

  9. F. Baldi, A. Minacci, M. Pepi, and A. Scozzafava, FEMS Microbiol. Ecol. 36, 169 (2001).

    Article  Google Scholar 

  10. S. V. Stolyar, O. A. Bayukov, Y. L. Gurevich, E. A. Denisova, R. S. Iskhakov, V. P. Ladygina, A. P. Puzyr’, P. P. Pustoshilov, and M. A. Bitekhtina, Inorg. Mater. 42, 763 (2006).

    Article  Google Scholar 

  11. S. Kianpour, A. Ebrahiminezhad, M. Mohkam, A. M. Tamaddon, A. Dehshahri, R. Heidari, and Y. Ghasemi, J. Basic Microbiol. 57, 132 (2017).

    Article  Google Scholar 

  12. S. V. Stolyar, D. A. Balaev, V. P. Ladygina, A. A. Dubrovskiy, A. A. Krasikov, S. I. Popkov, O. A. Bayukov, Y. V. Knyazev, R. N. Yaroslavtsev, M. N. Volochaev, R. S. Iskhakov, K. G. Dobretsov, E. V. Morozov, O. V. Falaleev, E. V. Inzhevatkin, et al., J. Supercond. Nov. Magn. 31, 2297 (2018).

    Article  Google Scholar 

  13. V. I. Tugarinov, I. Y. Makievskii, and A. I. Pankrats, Instrum. Exp. Tech. 47, 472 (2004).

    Article  Google Scholar 

  14. R. J. Prosen, J. O. Holmen, and B. E. Gran, J. Appl. Phys. 32, S91 (1961).

    Article  ADS  Google Scholar 

  15. B. Martínez, X. Obradors, L. Balcells, A. Rouanet, and C. Monty, Phys. Rev. Lett. 80, 181 (1998).

    Article  ADS  Google Scholar 

  16. T. Hiemstra, Geochim. Cosmochim. Acta 158, 179 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk Territory, the Krasnoyarsk Regional Fund for the Support of Scientific and Technical Activities (project no. 19-42-240012 r_a “Magnetic resonance in ferrihydrite nanoparticles: Effects associated with the “core–shell” structure). This work was supported by a grant from the President of the Russian Federation for state support of young Russian scientists – candidates of sciences no. MK-1263.2020.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Stolyar.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolyar, S.V., Yaroslavtsev, R.N., Ladygina, V.P. et al. Collective Spin Glass State in Nanoscale Particles of Ferrihydrite. Semiconductors 54, 1710–1712 (2020). https://doi.org/10.1134/S1063782620120362

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620120362

Keywords:

Navigation