Skip to main content
Log in

Supersymmetry and Stable Dirac Sea in Carbon Nanotubes

  • XXVIII INTERNATIONAL SYMPOSIUM “NANOSTRUCTURES: PHYSICS AND TECHNOLOGY”, MINSK, REPUBLIC OF BELARUS, SEPTEMBER, 2020. GRAPHENE
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We consider the construction of exactly solvable models of twisted carbon nanotubes by applying Darboux transformation to the square of the Dirac-like Hamiltonian, describing the low-energy dynamics of charge carriers. It is shown that obtained two pseudo-Schrodinger expressions are intertwined, demonstrating supersymmetry structure. It is proved, that for the considered class of pseudo-scalar external perturbations, the unitary disentanglement of negative/ positive states as within Foldy-Wouthuysen (FW) approach, so by Eriksen or SU(2) methods, can be carried out exactly, thus demonstrating the stability of the Dirac sea. The necessity of introduction of the probability density operator into the theory, while considering the problem in FW representation, is underlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Basar and G. V. Dunne, Phys. Rev. D 78, 065022 (2008).

    Article  ADS  Google Scholar 

  2. V. Jakubski and M. Plyushchay, Phys. Rev. D 85, 045035 (2012).

    Article  ADS  Google Scholar 

  3. H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 62, 1255 (1993).

    Article  ADS  Google Scholar 

  4. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).

    Article  ADS  Google Scholar 

  5. M. Moshinski and A. Szczepaniak, J. Phys A: Math. Gen. 22, L817 (1989).

    Article  ADS  Google Scholar 

  6. Supersymmetry in Quantum Mechanics, Ed. by F. Cooper, A. Khare, and U. Sukhatme (World Scientific, Singapore, 2001).

    MATH  Google Scholar 

  7. F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251, 267 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  8. R. P. Marti’nez y Romero, M. Moreno, and A. Zentella, Phys. Rev. D 43, 2036 (1991).

    Article  ADS  Google Scholar 

  9. E. de Vries, Forstschr. Phys. 18, 149 (1970).

    Article  ADS  Google Scholar 

  10. Handbuch der Laplace Transformation, Ed. by G. Doetsh (Birkhäuser, Basel, 1950–1956).

  11. T. M. Rusin and W. Zawadzki, Phys. Rev. A 84, 062124 (2011).

    Article  ADS  Google Scholar 

  12. E. L. Rumyantsev, P. E. Kunavin, and A. V. Germanenko, Semiconductors 53, 2147 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by Ministry of Science and Higher Education of the Russian Federation within the framework of the State Task Program (FEUZ-2020-0054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. L. Rumyantsev, P. E. Kunavin or A. V. Germanenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantsev, E.L., Kunavin, P.E. & Germanenko, A.V. Supersymmetry and Stable Dirac Sea in Carbon Nanotubes. Semiconductors 54, 1661–1663 (2020). https://doi.org/10.1134/S1063782620120349

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620120349

Keywords:

Navigation