Skip to main content
Log in

CONSTRUCTION OF A UNIFIED CURVE IN MODELING THE PROCESS OF CRATER FORMATION BY COMPACT PROJECTILES OF DIFFERENT SHAPES

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A series of numerical simulations of the impact of projectiles of different shapes onto massive targets is performed. It is experimentally demonstrated that the dependences of the dimensionless depths of the craters formed by projectiles of different shapes on the dimensionless kinetic energy is described by a unified modeling curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. M. E. Van Valkenburg, W. G. Clay, and J. H. Huth, “Impact Phenomena at High Speeds," J. Appl. Phys. 27 (10), 1123–1129 (1956).

  2. D. R. Christman and J. W. Gehring “Analysis of High-Velocity Projectile Penetration Mechanics," J. Appl. Phys. 37(4), 1579–1587 (1966).

  3. J. A. Zukas, T. Nicolas, H. F. Swift, et al., Impact Dynamics (Wiley, 1982).

  4. L. A. Merzhievskii and V. M. Titov, “High-Speed Collision," Fiz. Goreniya Vzryva 23 (5), 92–108 (1987) [Combust., Expl., Shock Waves 23 (5), 589–604 (1987)].

  5. L. A. Merzhievsky, “Crater Formation in a Plastic Target under Hypervelocity Impact," Int. J. Impact Eng. 20(6–10), 557–568 (1997).

  6. Y. Shanbing, S. Gengchen, and T. Qingming, “Experimental Laws of Cratering for Hypervelocity Impacts of Spherical Projectiles into Thick Target," Int. J. Impact Eng. 15 (1), 67–77 (1994).

  7. Y. Sun, C. Shi, Z. Liu, et al., “Theoretical Research Progress in High-Velocity/Hypervelocity Impact on Semi-Infinite Targets," Shock Vibr. 2015, 1–15 (2015).

  8. N. A. Zlatin, A. P. Krasilshchikov, G. I. Mishin, et al.,Ballistic Setups and Their Applications in Experimental Studies (Nauka, Moscow, 1974) [in Russian].

  9. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic Press, New York, 1967).

  10. L. V. Belyakov, F. F. Vitman, and N. A. Zlatin, “Impact of Deformable Solids and Its Modeling. 2. Modeling the Impact of a Sphere onto a Half-Space," Zh. Tekh. Fiz. 33 (9), 900–995 (1963).

  11. F. F. Vitman and N. A. Zlatin, “Impact of Deformable Solids and its Modeling. 1. State of the Art and Theory of the Process," Zh. Tekh. Fiz. 33 (6), 982–989 (1963).

  12. W. Witt and M. Loffler, “The Electromagnetic Gun-Closer to Weapon System Status," Military Technol. 5, 80–86 (1998).

  13. V. M. Fomin, B. V. Postnikov, G. A. Sapozhnikov, and V. P. Fomichev, “Multistage Method of Projectile Acceleration," Dokl. Akad. Nauk 374 (2), 198–201 (2000).

  14. V. A. Ogorodnikov, E. Yu. Borovkova, and S. V. Erunov, “Strength of Some Grades of Steel and Armco Iron under Shock Compression and Rarefaction at Pressures of 2–200 GPa," Fiz. Goreniya Vzryva40 (5), 109–117 (2004) [Combust., Expl., Shock Waves40 (5), 597–604 (2004)].

  15. E. I. Kraus, A. Yu. Melnikov, V. M. Fomin, and I. I. Shabalin, “Penetration of Steel Projectiles through Finite-Thickness Ice Targets," Prikl. Mekh. Tekh. Fiz. 60 (3), 146–153 (2019) [J. Appl. Mech. Tech. Phys. 60 (3) 526–532 (2019)].

  16. E. I. Kraus and I. I. Shabalin, “Reactor 2D: A Tool for Simulation of Shock Deformation," AIP Conf. Proc. 1770, 030092 (2016).

  17. E. Kraus and I. Shabalin, “Melting behind the Front of the Shock Wave," Thermal Sci. 23 (2), 519–524 (2019).

  18. E. I. Kraus and I. I. Shabalin, “Simulation of Fracture in 3D Dynamic Problems of Collision of Solid Bodies," AIP Conf. Proc.2027, 030165 (2018).

  19. A. E. Medvedev and I. I. Shabalin, “Analytical Representation of the Zlatin Modeling Curve," Fiz. Mezomekh. 2 (5), 105–107 (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Kraus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraus, E.I., Fomin, V.M. & Shabalin, I.I. CONSTRUCTION OF A UNIFIED CURVE IN MODELING THE PROCESS OF CRATER FORMATION BY COMPACT PROJECTILES OF DIFFERENT SHAPES. J Appl Mech Tech Phy 61, 855–865 (2020). https://doi.org/10.1134/S0021894420050211

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894420050211

Keywords

Navigation