Skip to main content
Log in

IMPACT RESISTANCE OF CERAMICS IN A NUMERICAL EXPERIMENT

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A series of computations based on experimental data on the depth of projectile penetration into targets is performed for verification of parameters of ballistic stability of plates made of Al2O3, B4C, and SiC ceramics. Interaction of a projectile with a steel core and a target made of an aluminum alloy with a variable-thickness ceramic plate positioned ahead of the target is simulated. The computed results are compared with experimental data for various ceramic targets 1–5 mm thick and projectile velocities of 810–850 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. I. F. Kobylkin and V. V. Selivanov, Materials and Structures of Light Armor Protection (Bauman Moscow State Tech. Univ., Moscow, 2014).

  2. Z. Rosenberg, S. Bless, Y. Yeshurun, and K. Okajima, “A New Definition of Ballistic Efficiency of Brittle Materials Based on the Use of Thick Backing Plates," in Impact Loading and Dynamic Behavior of Materials, Proc. of IMPACT 87 Symp. (DCM Informationsgesellschaft Verlag, Oberursel, 1988), pp. 491–498.

  3. Z. Rozenberg and Y. Yeshurun, “The Relation between Ballistic Efficiency and Compressive Strength of Ceramic Tiles," Int. J. Impact Eng. 7 (3), 357–362 (1988).

  4. F. Cui, G. Wu, T. Ma, et al., “Effect of Ceramic Properties and Depth-of-Penetration Test Parameters on the Ballistic Performance of Armour Ceramics," Def. Sci. J. 67 (3), 260–268 (2017).

  5. R. R. Franzen, D. L. Orphal, and C. E. Anderson, “The Influence of Experimental Design on Depth-of-Penetration (DOP) Test Results and Derived Ballistic Efficiencies," Int. J. Impact Eng.19 (8), 727–737 (1997).

  6. R. L. Woodward and B. J. Baxter, “Ballistic Evaluation of Ceramics: Influence of Test Conditions," Int. J. Impact Eng.15 (2), 119–124 (1994).

  7. Z. Rosenberg and E. Dekel, Terminal Ballistics(Springer, Cham, 2020).

  8. P. J. Hazell, “Measuring the Strength of Brittle Materials by Depth-of-Penetration Testing," Adv. Appl. Ceramics109 (8), 504–510 (2010).

  9. J. Venkatesan, M. A. Iqbal, and V. Madhu, “Ballistic Performance of Bilayer Alumina/Aluminium and Silicon Carbide/Aluminium Armours," Proc. Eng. 173, 671–678 (2017).

  10. E. I. Kraus and I. I. Shabalin, “Reactor 2D: A Tool for Simulation of Shock Deformation," AIP Conf. Proc. 1770, 030092 (2016).

  11. E. I. Kraus and I. I. Shabalin, “The Tool for High-Velocity Interaction and Damage of Solids," Math. Montisnigri39, 18–29 (2017).

  12. M. L. Wilkins, Computer Simulation of Dynamic Phenomena (Springer, Berlin, 1999).

  13. V. M. Fomin, A. I. Gulidov, G. A. Sapozhnikov, et al.,High-Velocity Interaction of Solids (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1990) [in Russian].

  14. E. I. Kraus, V. M. Fomin, and I. I. Shabalin, “Dynamic Method of Construction of Triangular Grids in Multiply Connected Domains," Vychisl. Tekhnol. 14 (5), 40–48 (2009).

  15. E. I. Kraus, I. I. Shabalin, and T. I. Shabalin, “Automatic Tetrahedral Mesh Generation for Impact Computations," AIP Conf. Proc., No. 1893, 030129 (2017).

  16. E. I. Kraus, I. I. Shabalin, and T. I. Shabalin, “Numerical Simulation of Deformation and Failure Processes of a Complex Technical Object under Impact Loading," J. Phys., Conf. Ser.991, 012048 (2018).

  17. E. I. Kraus, V. M. Fomin, and I. I. Shabalin, “Model Equations of Thermodynamic Functions of State of Substances. 1. Solids," Fiz. Mezomekh. 7, 285–288 (2004).

  18. E. I. Kraus and I. I. Shabalin, “A Few-Parameter Equation of State of the Condensed Matter," J. Phys. Conf. Ser. 774, 012009 (2016).

  19. E. Kraus and I. Shabalin, “Melting behind the Front of the Shock Wave," Therm. Sci. 23 (2), 519–524 (2019).

  20. A. I. Gulidov and I. I. Shabalin, “Numerical Localization of Boundary Conditions in Dynamically Contact Problems," Preprint No. 12 (Inst. Theor. Appl. Mech., Sib. Branch, Acad. of Sci. of the USSR, Novosibirsk, 1987).

  21. E. I. Kraus, A. Yu. Melnikov, V. M. Fomin, and I. I. Shabalin, “Penetration of Steel Projectiles through Finite-Thickness Ice Targets," Prikl. Mekh. Tekh. Fiz. 60 (3), 146–153 (2019) [J. Appl. Mech. Tech. Phys. 60 (3) 526–532 (2019)].

  22. M. Yu. Fedorov, E. I. Kraus, and I. I. Shabalin, “Modeling of Impact Actions on Structures in the Problem of Safety of Nuclear Power Units in Space," Vestn. Mosk. Aviats. Inst. 16 (3), 49–53 (2009).

  23. E. I. Kraus and I. I. Shabalin, “Simulation of Fracture in 3D Dynamic Problems of Collision of Solid Bodies," AIP Conf. Proc.2027, 030165 (2018).

  24. T. J. Moynihan, S. C. Chou, and A. L. Mihalcin, “Application of the Depth-of-Penetration Test Methodology to Characterize Ceramics for Personnel Protection," Def. Technol. 15 (6), 829–836 (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Kraus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraus, A.E., Kraus, E.I. & Shabalin, I.I. IMPACT RESISTANCE OF CERAMICS IN A NUMERICAL EXPERIMENT. J Appl Mech Tech Phy 61, 847–854 (2020). https://doi.org/10.1134/S002189442005020X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002189442005020X

Keywords

Navigation