Skip to main content
Log in

MECHANICAL PROPERTIES, STABILITY, AND BUCKLING OF GRAPHENE SHEETS AND CARBON NANOTUBES (REVIEW)

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A review of works devoted to the study of the mechanical properties, stability, and buckling of graphene and carbon nanotubes is presented. Most of these results are obtained by means of molecular dynamics and molecular mechanics, which make it possible to effectively investigate the mechanical properties and stability of nanostructures. The data on the strength of graphene are presented, and bending modes for chair and zigzag graphene sheets are analyzed. The stability and bending modes of natural vibrations of zigzag and chair nanotubes are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. V. Ya. Prinz and S. V. Golod, “Elastic Silicon-Film-Based Nanoshells: Formation, Properties, and Applications," Prikl. Mekh. Tekh. Fiz. 47 (6), 114–128 (2006) [J. Appl. Mech. Tech. Phys. 47 (6), 867–878 (2006)].

  2. K. B. Fritzler and V. Ya. Prinz, “3D Printing Methods for Micro- and Nanostructures," Usp. Fiz. Nauk 189, 55–71 (2019) [Phys.-Usp. 62 (1), 54–69 (2019)].

  3. S. Mojumder, A. Al Amin, and M. M. Islam, “Mechanical Properties of Stanene under Uniaxial and Biaxial Loading: A Molecular Dynamics Study," J. Appl. Phys. 118, 124305 (2015).

  4. R. E. Roman and S. W. Cranford, “Mechanical Properties of Silicone," Comput. Mater. Sci. 82, 50–55 (2014).

  5. A. V. Savin and M. A. Mazo, “2D Chain Models of Nanoribbon Scrolls," in Problems of Nonlinear Mechanics and Physics of Materials (Springer, Cham 2019). (Adv. Structur. Materials, Vol. 94.)

  6. A. V. Savin, R. A. Sakovich, and M. A. Mazo, “Using Spiral Chain Models for Study of Nanoscroll Structures," Phys. Rev. B 97, 165436 (2018).

  7. A. V. Alekseev, D. Y. Dubov, and M. R. Predtechenskiy, “Influence of Carbon Nanotubes on Mechanical Properties of Cast Aluminum, Grade A5," Inorg. Mater.: Appl. Res. 9 (2), 270–278 (2018).

  8. M. R. Predtechenskiy, Yu. D. Varlamov, and I. Yu. Koval’, “Structure Based on Carbon Nanotubes," RF Patent 2573873, C 1, No. 2014148224/05, Submitted on November 28, 2014; Published on January 27, 2016.

  9. B. Krause, P. Pötschke, E. Ilin, and M. Predtechenskiy, “Melt Mixed SWNT-Polypropylene Composites with Very Low Electrical Percolation," Polymer 98, 45–50 (2016).

  10. N. P. Stepina, M. S. Galkov, M. R. Predtechenskiy, et al., “Preparation and Transport Properties of Oriented Buckypapers with Single Walled Carbon Nanotubes," Mater. Elektron. Tekh. 22 (2), 104–111 (2019) [Modern Electron. Mater. 5 (1), 21–26 (2019)].

  11. X. Shi, N. M. Pugno, and H. Gao, “Constitutive Behavior of Pressurized Carbon Nanoscrolls," Int. J. Fracture 171 (2), 163–168 (2010).

  12. M. A. Il’gamov, “The Influence of Surface Effects on Bending and Vibrations of Nanofilms," Fiz. Tv. Tela 61 (10), 1825–1830 (2019) [Phys. Solid State 61 (10), 1779–1784 (2019)].

  13. E. A. Ivanova, D. A. Indeitsev, and N. F. Morozov, “On the Determination of the Rigidity Parameters of Nanoobjects," Zh. Tekh. Fiz. 76 (10), 74–80 (2006) [Tech. Phys. 51 (10), 1327–1333 (2006)].

  14. A. K. Geim and K. S. Novoselov, “The Rise of Graphene," Nature Mater. 6, 183–191 (2007).

  15. S. Iijima, “Helical Microtubules of Graphitic Carbon," Nature 354, 56–58 (1991).

  16. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, et al., “Electromechanical Resonators from Graphene Sheets," Science 315 (490), 490–493 (2007).

  17. H. Zhao, K. Min, and N. R. Aluru, “Size and Chirality Dependent Elastic Properties of Graphene Nanoribbons under Uniaxial Tension," Nano Lett. 9, 3012–3015 (2009).

  18. A. M. Krivtsov, Deformation and Fracture of Solids with Microstructure (Fizmatlit, Moscow, 2007) [in Russian].

  19. H. Zhao and N. R. Alurua, “Temperature and Strain-Rate Dependent Fracture Strength of Graphene," J. Appl. Phys. 108, 064321 (2010).

  20. J. Wackerfus, “Molecular Mechanics in the Context of the Finite Element Method," Int. J. Numer. Meth. Eng. 77, 969–997 (2009).

  21. I. F. Golovnev, E. I. Golovneva, and V. M. Fomin, “Molecular Dynamics Study into the Role of the Surface in Fracture of Nanostructures," Fiz. Mezomekh. 17 (6), 45–51 (2014) [Phys. Mesomech. 18 (2), 127–133 (2015)].

  22. D. A. Case, T. E. Cheatham, T. Darden, et al., “The Amber Biomolecular Simulation Programs," J. Comput. Chem. 26 (16), 1668–1688 (2005).

  23. J. W. Ponder and D. A. Case, “Force Fields for Protein Simulations," Adv. Protein Chem. 66, 27–85 (2003).

  24. F. Scarpa, S. Adhikari, and A. Srikantha Phani, “Effective Elastic Mechanical Properties of Single Layer Graphene Sheets," Nanotechnology 20 (6), 065709 (2009).

  25. A. Sears and R. C. Batra, “Macroscopic Properties of Carbon Nanotubes from Molecular-Mechanics Simulations," Phys. Rev. B 69 (23), 235406 (2004).

  26. A. V. Vakhrushev and A. M. Lipanov, “Numerical Analysis of the Atomic Structure and Shape of Metallic Nanoparticles," Zh. Vychisl. Mat. Mat. Fiz. 47 (10), 1774–1783 (2007).

  27. S. S. Gupta and R. C. Batra, “Elastic Properties and Frequencies of Free Vibrations of Single-Layer Graphene Sheets," J. Comput. Theor. Nanosci. 7 (10), 2151–2164 (2010).

  28. R. Ansari and S. Rouhi, “Atomistic Finite Element Model for Axial Buckling of Single-Walled Carbon Nanotubes," Physica E 43, 58–69 (2010).

  29. X. Huang, H. Yuan, W. Liang, and S. Zhang, “Mechanical Properties and Deformation Morphologies of Covalently Bridged Multi-Walled Carbon Nanotubes: Multiscale Modeling," J. Mech. Phys. Solids 58, 1847–1862 (2010).

  30. A. R. Khoei, E. Ban, P. Banihashemi, and M. J. Abdolhosseini Qomi, “Effects of Temperature and Torsion Speed on Torsional Properties of Single-Walled Carbon Nanotubes," Mater. Sci. Eng. C 31, 452–457 (2011).

  31. A. Sakhaee-Pour, “Elastic Buckling of Single-Layered Graphene Sheet," Comp. Mater. Sci. 45, 266–270 (2009).

  32. E. A. Ivanova, A. M. Krivtsov, N. F. Morozov, and A. D. Firsova, “Inclusion of the Moment Interaction in the Calculation of the Flexural Rigidity of Nanostructures," Dokl. Akad. Nauk 391 (6), 764–768 (2003) [Dokl. Phys. 48(8), 455–458 (2003)].

  33. E. A. Ivanova, A. M. Krivtsov, and N. F. Morozov, “Derivation of Macroscopic Relations of the Elasticity of Complex Crystal Lattices Taking into Account the Moment Interactions at the Microlevel," Prikl. Mat. Mekh. 71 (4), 595–615 (2007) [J. App. Math. Mech. 71 (4), 543–561 (2007)].

  34. P. E. Tovstik and T. P. Tovstik, “Static and Dynamic Analysis of Two-Dimensional Graphite Lattices," Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, No. 5, 35–43 (2012) [Mech. Solids 47(5), 517–524 (2012).

  35. A. Shahabi, M. Ghassemi, S. M. Mirnouri Langroudi, et al., “Effect of Defect and C60s Density Variation on Tensile and Compressive Properties of Peapod," Comp. Mater. Sci. 50, 586–594 (2010).

  36. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics Vol. 1: Mechanics (Fizmatlit, Moscow, 2002; Pergamon Press, 1960).

  37. M. I. Katsnelson and A. Fasolino, “Graphene as a Prototype Crystalline Membrane," Accounts Chem. Res. 46(1), 97–105 (2012).

  38. J. C. Meyer, A. K. Geim, M. I. Katsnelson, et al., “The Structure of Suspended Graphene Sheets," Nature 446(7131), 60–63 (2007).

  39. V. Lee, C. Park, C. Jaye, et al., “Substrate Hybridization and Rippling of Graphene Evidenced by Near-Edge X-Ray Absorption Fine Structure Spectroscopy," J. Phys. Chem. Lett. 1 (8), 1247–1253 (2010).

  40. F. Guinea, B. Horovitz, and P. Le Doussal, “Gauge Field Induced by Ripples in Graphene," Phys. Rev. B 77, 205421 (2008).

  41. V. Atanasov and A. Saxena, “Tuning the Electronic Properties of Corrugated Graphene: Confinement, Curvature, and Band-Gap Opening," Phys. Rev. B 81, 205409 (2010).

  42. K. Xu, P. Cao, and J. R. Heath, “Scanning Tunneling Microscopy Characterization of the Electrical Properties of Wrinkles in Exfoliated Graphene Monolayers," Nano Lett. 9(12), 4446–4451 (2009).

  43. W. Bao, F. Miao, Z. Chen, et al., “Controlled Ripple Texturing of Suspended Graphene and Ultrathin Graphite Membranes," Nature Nanotechnol. 4 (9), 562–566 (2009).

  44. S. Khan, K. N. Tripathi, M. Aggarwal, et al., “Field Emission Properties of Fe70Pt30 Catalysed Multiwalled Carbon Nanotubes," J. Exp. Nanosci. 2 (3), 215–228 (2007).

  45. M. Paradise and T. Goswami, “Carbon Nanotubes Production and Industrial Applications," Mater. Des. 28(5), 1477–1489 (2007).

  46. P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century (Cambridge University Press, 2003).

  47. E. Dobardvzic, I. Milovsevic, B. Nikolic, et al., “Single-Wall Carbon Nanotubes Phonon Spectra: Symmetry-Based Calculations," Phys. Rev. B 68 (4), 045408 (2003).

  48. R. N. Salaway and L. V. Zhigilei, “Molecular Dynamics Simulations of Thermal Conductivity of Carbon Nanotubes: Resolving the Effects of Computational Parameters," Int. J. Heat Mass Transfer 70, 954–964 (2014).

  49. S. L. Mayo, B. D. Olafson, and W. A. Goddard, “DREIDING: A Generic Force Field for Molecular Simulations," J. Phys. Chem.94 (26), 8897–8909 (1990).

  50. S. N. Korobeynikov, V. V. Alyokhin, B. D. Annin, and A. V. Babichev, “Quasi-Static Buckling Simulation of Single-Layer Graphene Sheets by the Molecular Mechanics Method," Math. Mech. Solids 20 (7), 836–870 (2015).

  51. A. V. Savin, Yu. S. Kivshar, and B. Hu, “Suppression of Thermal Conductivity in Graphene Nanoribbons with Rough Edges," Phys. Rev. B 82, 195422 (2010).

  52. A. V. Savin, B. Hu, and Yu. S. Kivshar, “Thermal Conductivity of Single-Walled Carbon Nanotubes," Phys. Rev. B 80, 195423 (2009).

  53. S. Viola Kusminskiy, D. K. Campbell, A. H. Castro Neto, “Lenosky’s Energy and the Phonon Dispersion of Graphene," Phys. Rev. B 80 (3), 035401 (2010).

  54. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science 321 (5887), 385–388 (2008).

  55. R. Gillen, M. Mohr, and J. Maultzsch, “Raman-Active Modes in Graphene Nanoribbons," Phys. Stat. Solidi. B247, 2941–2944 (2010).

  56. K. S. Novoselov, “Electric Field Effect in Atomically Thin Carbon Films," Science 306 (5696), 666–669 (2004).

  57. A. E. Galashev and O. R. Rakhmanova, “Mechanical and Thermal Stability of Graphene and Graphene-Based Materials," Usp. Fiz. Nauk 184 (10), 1045–1065 (2014) [Phys.-Usp. 184 (10), 970–990 (2014)].

  58. A. V. Eletskii, “Mechanical Properties of Carbon Nanostructures and Related Materials," Usp. Fiz. Nauk 177 (3), 233–274 (2007) [Phys.-Usp. 50 (3), 225–262 (2007)].

  59. T. Yu, Z. Ni, C. Du, et al., “Raman Mapping Investigation of Grapheme on Transparent Flexible Substrate: The Strain Effect," J. Phys. Chem. C. 112 (33), 12602–12605 (2008).

  60. Z. H. Ni, W. Chen, X. F. Fan, et al., “Raman Spectroscopy of Epitaxial Graphene on a SiC Substrate," Phys. Rev. B 77, 115416 (2008).

  61. Z. H. Ni, H. M. Wang, Y. Ma, et al., “Tunable Stress and Controlled Thickness Modification in Graphene by Annealing," ACS Nano 2 (5), 1033–1039 (2008).

  62. Z. H. Ni, T. Yu, Y. H. Lu, et al., “Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening," ACS Nano 2 (11), 2301–2305 (2008).

  63. Q. Lu and R. Huang, “Nonlinear Mechanics of Single-Atomic-Layer Graphene Sheets," Int. J. Appl. Mech. 1 (3), 443–467 (2009).

  64. I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, and P. L. McEuen, “Mechanical Properties of Suspended Graphene Sheets," J. Vacuum Sci. Technol. B 25 (6), 2558 (2007).

  65. M. Poot and H. S. J. van der Zant, “Nanomechanical Properties of Few-Layer Graphene Membranes," Appl. Phys. Lett. 92(6), 63–111 (2008).

  66. J. S. Bunch, S. S. Verbridge, J. S. Alden, et al., “Impermeable Atomic Membranes from Graphene Sheets," Nano Lett. 8(8), 2458–2462 (2008).

  67. C. H. Wong and V. Vijayaraghavan, “Nanomechanics of Free Form and Water Submerged Single Layer Graphene Sheet under Axial Tension by Using Molecular Dynamics Simulation," Mater. Sci. Eng. A 556, 420–428 (2012).

  68. Y. I. Jhon, Y. Min Jhon, G. Y. Yeom, and M. S. Jhon, “Orientation Dependence of the Fracture Behavior of Graphene," Carbon 66, 619–628 (2014).

  69. M. A. N. Dewapriya, A. Srikantha Phani, and R. K. N. D. Rajapakse, “Influence of Temperature and Free Edges on the Mechanical Properties of Graphene," Model. Simul. Mater. Sci. Eng. 2 (6), 065017 (2013).

  70. A. E. Galashev and S. Yu. Dubovik, “Molecular Dynamics Simulation of Compression of Single-Layer Graphene," Phys. Solid State 55 (9), 1976–1983 (2013).

  71. S. Yu. Davydov and O. V. Posrednik, “On the Theory of Elastic Properties of Two Dimensional Hexagonal Structures," Phys. Solid State 57 (4), 837–843 (2015).

  72. E. F. Sheka, N. A. Popova, V. A. Popova, et al., “Structure-Sensitive Mechanism of Nanographene Failure," J. Exp. Theor. Phys. 112 (4), 602–611 (2011).

  73. S. V. Dmitriev, Yu. A. Baimova, A. V. Savin, and Yu. S. Kivshar’, “Stability Boundaries of a Flat Graphene Sheet upon Deformation in a Plane," Pis’ma Zh. Eks. Teor. Fiz. 93 (10), 632–637 (2011).

  74. J. A. Baimova, S. V. Dmitriev, K. Zhou, and A. V. Savin, “Unidirectional Ripples in Strained Graphene Nanoribbons with Clamped Edges at Zero and Finite Temperatures," Phys. Rev. B86 (3), 035427 (2012).

  75. S. V. Dmitriev, J. A. Baimova, A. V. Savin, and Yu. S. Kivshar, “Ultimate Strength, Ripples, Sound Velocities, and Density of Phonon States of Strained Graphene," Comput. Mater. Sci. 53(1), 194–203 (2012).

  76. Yu. A. Baimova and R. R. Mulyukov, Graphene, Nanotubes, and Other Carbon Structures (Izd. Ross. Akad. Nauk, Moscow, 2018) [in Russian].

  77. V. A. Kuz’kin and A. M. Krivtsov, “Describing the Mechanical Properties of Graphene Using Particles with Rotational Degrees of Freedom," Dokl. Akad. Nauk 440 (4), 476–479 (2011).

  78. V. V. Alekhin, B. D. Annin, A. V. Babichev, and S. N. Korobeinikov, “Natural Vibrations and Buckling of Graphene Sheets," Dokl. Akad. Nauk 453 (1), 37–40 (2013).

  79. V. V. Alekhin, B. D. Annin, A. V. Babichev, and S. N. Korobeinikov, “Natural Vibrations and Buckling of Graphene Sheets," Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, No. 5, 34–38 (2013) [Mech. Solids 48 (5), 509–513 (2013)].

  80. B. D. Annin, S. N. Korobeynikov, and A. V. Babichev, “Computer Simulation of Nanotube Buckling in Torsion," Sib. Zh. Indust. Mat. 11 (1), 3–22 (2008).

  81. A. M. Lavrentyev and A. Yu. Ishlinskii, “Dynamic Forms of Buckling of Elastic Systems," Dokl. Akad. Nauk 64 (6), 779–782 (1949).

  82. A. V. Eletskii, “Carbon Nanotubes," Usp. Fiz. Nauk 167 (9), 945–972 (1997) [Phys.-Usp. 40(9), 899–924 (1997)].

  83. S. N. Korobeynikov, V. V. Alyokhin, B. D. Annin, and A. V. Babichev, “Using Stability Analysis of Discrete Elastic Systems to Study the Buckling of Nanostructures," Arch. Mech.64 (4), 367–404 (2012).

  84. B. D. Annin, V. V. Alekhin, A. V. Babichev, and S. N. Korobeinikov, “Application of Molecular Mechanics to Problems of Buckling and Natural Vibrations of Single-Layer Carbon Nanotubes," Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, No. 5, 65–83 (2012).

  85. B. D. Annin, V. V. Alekhin, A. V. Babichev, and S. N. Korobeynikov, “Computer Simulation of Nanotube Contact," Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, No. 3, 56–76 (2010) [Mech. Solids 45 (3), 352–369 (2010)].

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. D. Annin or Yu. A. Baimova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annin, B.D., Baimova, Y.A. & Mulyukov, R.R. MECHANICAL PROPERTIES, STABILITY, AND BUCKLING OF GRAPHENE SHEETS AND CARBON NANOTUBES (REVIEW). J Appl Mech Tech Phy 61, 834–846 (2020). https://doi.org/10.1134/S0021894420050193

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894420050193

Keywords

Navigation